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I. INTRODUCTION

Intelligent robots are able to interact with objects through
exploratory behaviors in real-world environments. For in-
stance, a robot can take a look behavior to figure out if
an object is “red” using computer vision methods. However,
vision is not sufficient to recognize if an opaque bottle is “full”
or not, and behaviors that support other sensory modalities,
such as lift and shake, become necessary. Given the sensing
capabilities of robots and the perceivable properties of objects,
it is important to develop algorithms to enable robots to use
multimodal exploratory behaviors to identify object properties,
answering questions such as “Is this object red and empty?” In
this paper, we use attribute to refer to a perceivable property
(of an object) and use behavior to refer to an exploratory
action that a robot can take to interact with the object.

Robot multimodal perception is a challenge for several
reasons. First, exploratory behaviors can be costly, and even
risky in the real world. For instance, to shake a water bottle
to identify the value of attribute “empty”, the robot must first
grasp and lift it. Those behaviors take time and can break
the bottle in case of failed grasps. Second, those behaviors
are not equally useful for recognizing different attributes.
For instance, lift is more useful than look for “heavy,”
while look works much better for “shiny.” Robot attribute
learning (RAL) algorithms aim to learn an observation model
for each attribute given an exploratory behavior and play
a key role in robot multimodal perception. Most existing
RAL algorithms are considered offline: the robot learns the
attributes by interacting with objects without considering data
collection costs. In the evaluation phase, the robot uses the
learned attributes to identify attributes of new objects (i.e.,
attribute identification). In this research, we are concerned with
a novel online RAL (On-RAL) setting, where the robot needs
to learn an action policy for interacting with objects toward
efficient attribute learning and accurate attribute identification
at the same time.

On-RAL faces the fundamental trade-off between explo-
ration and exploitation. A trivial solution is to let the robot
optimize its behaviors solely on attribute identification as if
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the attributes have been learned already. In doing so, the robot
still learns the observation models of attribute-action pairs as
it becomes more experienced, but this trivial solution lacks
a mechanism for actively improving its long-term attribute
identification performance. The main contribution of this paper
is an algorithm, called information-theoretic reward shaping
(ITRS), for On-RAL problems. ITRS, for the first time, equips
a robot with the capability of optimizing its sequential ac-
tion selection toward (efficiently and accurately) learning and
identifying attributes at the same time, as shown in Figure 1.
ITRS has been evaluated using two datasets: one dataset, called
CY101, contains 101 objects with ten exploratory behaviors
and seven types of sensory modalities [33]; and the other,
called ISPY32, includes 32 objects with eight behaviors and
six types of modalities [34]. Compared with existing methods
from the RAL literature [2, 36], ITRS reduces the overall
cost of exploration in the long term while reaching a higher
accuracy of attribute identification.

II. RELATED WORK

Multimodal Perception in Robotics: Significant advances
have been achieved recently in computer vision, e.g., [17, 26]
and natural language processing, e.g., [6, 7]. While language
and vision are important communication channels for robotic
perception, many object properties cannot be detected using vi-
sion alone [12] and people are not always available to verbally
provide guidance in exploration tasks. Therefore, researchers
have jointly modeled language and visual information for
multimodal text-vision tasks [25]. However, many of the most
common nouns and adjectives (e.g., “soft”, “empty”) have a
strong non-visual component [20] and thus, robots would need
to perceive objects using additional sensory modalities to rea-
son about and perceive such linguistic descriptors. To address
this problem, several lines of research have shown that incor-
porating a variety of sensory modalities is the key to further
enhance the robotic capabilities in recognizing multisensory
object properties (see [4] and [19] for a review). For example,
visual and physical interaction data yields more accurate
haptic classification for objects [11], and non-visual sensory
modalities (e.g., audio, haptics) coupled with exploratory
actions (e.g., touch or grasp) have been shown useful for
recognizing objects and their properties [5, 10, 15, 22, 28],
as well as grounding natural language descriptors that people
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Fig. 1: An overview of the ITRS algorithm. A human user will choose an object and ask a query such as “Is this object red and soft?”. The
robot will generate a perception model on the specified attributes, i.e., “red” and “soft”. Queried attributes and the corresponding perception
model then will be used to construct states and the observation function of the POMDP model respectively. The reward function will be
shaped by the quality of the observation function and the robot’s experience. The robot uses the generated POMDP model to compute a
policy π and interacts with the queried object. Newly-perceived feature data will be used to update the robot’s experience and augment the
dataset. Humans will give feedback to the robot’s answer and attach labels to the feature data points.

use to refer to objects [3, 34]. More recently, researchers
have developed end-to-end systems to enable robots to learn
to perceive the environment and perform actions at the same
time [18, 37].

A major limitation of these and other existing methods is
that they require large amounts of object exploration data,
which is much more expensive to collect as compared to
vision-only datasets. A few approaches have been proposed to
actively select behaviors at test time (e.g., when recognizing
an object [9, 29] or when deciding whether a set of attributes
hold true for an object [2]). One recent work has also shown
that robots can bias which behavior to perform at training time
(i.e., when learning a model grounded in multiple sensory
modalities and behaviors) but they did not learn an actual
policy for doing so [36]. Different from existing work, we
propose a method for learning a behavior policy for object
exploration that a robot can use when learning to ground the
semantics of attributes.

Planning under Uncertainty: Decision-theoretic methods
have been developed to help agents plan behaviors and address
uncertainty in non-deterministic action outcomes [24, 32].
Existing planning models such as partially observable Markov
decision process (POMDP) [13], belief space planning [23]
and Bayesian approaches [27] have shown great advantages
for planning robot perception behaviors, because robots need
to use exploratory actions to estimate the current world state.
To learn semantic attributes, robots frequently need to choose
multiple actions, so POMDP which is useful for long-term
planning is particularly suitable. Many of the POMDP-based
robot perception methods are vision-based [8, 31, 38, 40].
Compared to those methods, our robot takes advantage of non-
visual sensory modalities, such as audio and haptics.

Work closest to this research plans under uncertainty to
interact with objects using multimodal exploratory actions [2],
where they modeled the mixed observability [21] in domains
of a robot interacting with objects (we use their work as a

baseline approach in experiments). The work of Amiri et al.
[2] and this work share the same spirit from the planning
and perception perspectives. The main difference is that their
work assumed that sufficient training data and annotations
are available for the robot to learn the perception models of
its exploratory actions. In comparison, we consider a more
challenging setting, called “Online RAL,” where the data
collection and task completion processes are simultaneous.

Robot Attribute Learning (RAL): To select actions to
identify objects’ perceivable properties (e.g., “heavy,” “red,”
“full,” and “shiny”), robots need observation models for their
exploratory actions. Researchers have developed algorithms
to help robots determine the presence of possibly new at-
tributes [16] and learn observation models of objects’ per-
ceivable properties (i.e., attributes) given different exploratory
actions [34, 35, 30]. In the case where the object attributes
refer to the object’s function, they are then referred to as 0-
order affordances [1]. Those methods focused on learning to
improve the robots’ perception capabilities. Once the learning
process is complete, a robot can use the learned attributes to
perform tasks, such as attribute identification (e.g., to tell if a
bottle is “heavy” and “red”). Compared to those learning meth-
ods, we consider an online multimodal RAL setting, where the
robot learns the attributes (an exploration process) and uses the
learned attributes to identify object properties (an exploitation
process) at the same time. The exploration-exploitation trade-
off is a fundamental decision-making challenge in unknown
environments. While the problem has been studied in multi-
armed bandit [14] and reinforcement learning settings [32], it
has not been studied in RAL contexts.

III. ALGORITHM DESCRIPTION

In On-RAL problems, the robot needs to optimize its
behaviors toward not only improving the accuracy of attribute
identification but also minimizing the cost of exploratory
actions. We introduce two factors of perception quality and



interaction experience into the reward design of POMDPs to
achieve the trade-off between exploration (actively collecting
data for attribute learning) and exploitation (using the learned
attributes for identification tasks). Intuitively, we aim to en-
courage the robot to select exploratory action a from those
actions, where the perception model of a is of poor quality, and
there is relatively limited experience of applying a to identify
attribute p, i.e., the experience of (p, a) is limited.

The details of our approach are omitted from this short
paper, and are available in the full paper of this work [39].

IV. EXPERIMENTAL EVALUATION

The key hypothesis is that ITRS outperforms existing RAL
algorithms in learning efficiency and task completion accuracy
(there does not exist an On-RAL algorithm in the literature).
Two public datasets of CY101 [33] and ISPY32 [34] are
used in our experiments where CY101 contains many more
household objects and attributes.

A. Illustrative Trial

From the robot’s many trials of the learning experience,
we selected two trials (T1 and T2), where the robot faced the
same object (a Coke can that has attributes “metal,” “empty,”
and “container”) and needed to answer the same question “Is
this object soft?” From the dataset, we know that the correct
answer should be “no” (the robot did not know it). T1 appeared
at the second batch of training, and T2 appeared at the ninth.
We present both trials and explain how the robot performed
better in T2.

TABLE I: Early and late observation models for action press
Early phase Late phase

Not soft
(Ground Truth) 0.68 0.32 0.82 0.17

Soft
(Ground Truth) 0.50 0.50 0.20 0.80

Not soft
(Observed)

Soft
(Observed)

Not soft
(Observed)

Soft
(Observed)

In T1 (early learning phase), the robot first performed
the look action. Then, the robot had the following options:
grasp, tap, push, poke and press. Specifically, for press, the
observation probability (shown in Table I) was nearly uniform,
which is typical in the early learning phase. Among those “less
useful” actions, the robot chose grasp. The robot’s belief was
changed from [0.37, 0.63] to [0.46, 0.54], where the entries
represent “not soft” and “soft” respectively. After press, ITRS
sequentially suggested grasp, lift, hold and hold. Finally, the
robot reported “positive” that resulted in a failed trial with a
total cost of 55.5 seconds.

In T2 (late learning phase), Action press became more
useful for identifying attribute “soft” compared to T1, as shown
in Table I. For grasp, the interaction experience was 0.67
and the observation probability was [0.66, 0,33, 0.61, 0.38]
(TN, FN, FP, TP), which meant that the robot was experienced
with action grasp and considered grasp was not as useful as
press. Accordingly, ITRS suggested press instead of grasp
after taking look. The robot’s belief changed from [0.57, 0.43]

(a) look (b) grasp (c) lift

(d) shake (e) shake (f) shake

Fig. 2: A demonstration of the learned action policy using ITRS
algorithm. The robot performed six actions in a row. At the beginning,
the robot started with a uniform distribution (it evenly believed the
object can be empty or not). After completing the six actions, the
belief converged to “negative” (0.94 probability). Finally the robot
selected a reporting action to report that the object is “not empty.”

to [0.67, 0.33]. After only look and press, the robot was able
to quickly report “negative”, resulting in a successful trial with
a total exploration cost of 22.5 seconds.

From the above two trials (same query and object in
different learning phases), we see how the improved perception
model of (press, soft) helped the robot correctly identify
“soft” with a lower cost.

B. Real Robot Demonstration

We have demonstrated the learned action policy using a real
robot (UR5e arm from Universal Robots). It should be noted
that the two datasets we used in this research were collected on
robots that are different from the robot in the demonstration.
It is a major challenge in robotics of transferring skills learned
from one robot to another. To alleviate the effect caused by the
heterogeneity of robot platforms, after performing each action,
we sampled a data instance from CY101.

In the demonstration trial, our robot was given an object –
a pill bottle half-full of beans. The one-attribute query was “Is
this object empty?” Figure 2 shows a sequence of screenshots
of the UR5e robot completing the task using a learned ITRS
policy.

V. CONCLUSIONS

In this work, we focus on a new On-RAL problem where the
robot is required to complete attribute identification tasks and,
at the same time, learn its observation model for each attribute.
We propose an algorithm called ITRS that selects exploratory
actions toward simultaneous attribute learning and attribute
identification. The proposed method and baseline methods
are evaluated using two real-world datasets. Experimental
results show that ITRS enables the robot to complete attribute
identification tasks at a higher accuracy using the same amount
of training time compared to baselines.



REFERENCES

[1] Aitor Aldoma, Federico Tombari, and Markus Vincze.
Supervised learning of hidden and non-hidden 0-order
affordances and detection in real scenes. In 2012 IEEE
International Conference on Robotics and Automation,
pages 1732–1739. IEEE, 2012.

[2] Saeid Amiri, Suhua Wei, Shiqi Zhang, Jivko Sinapov,
Jesse Thomason, and Peter Stone. Multi-modal predi-
cate identification using dynamically learned robot con-
trollers. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI-18), 2018.

[3] Jacob Arkin, Daehyung Park, Subhro Roy, Matthew R
Walter, Nicholas Roy, Thomas M Howard, and Rohan
Paul. Multimodal estimation and communication of
latent semantic knowledge for robust execution of robot
instructions. The International Journal of Robotics Re-
search, 39(10-11):1279–1304, 2020.

[4] Jeannette Bohg, Karol Hausman, Bharath Sankaran,
Oliver Brock, Danica Kragic, Stefan Schaal, and Gau-
rav S Sukhatme. Interactive perception: Leveraging
action in perception and perception in action. IEEE
Transactions on Robotics, 33(6):1273–1291, 2017.
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Cerezo, and Jesús M Gómez-de Gabriel. Bayesian and
neural inference on LSTM-based object recognition from
tactile and kinesthetic information. IEEE Robotics and
Automation Letters, 6(1):231–238, 2020.

[23] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and
Tomas Lozano-Perez. Belief space planning assuming
maximum likelihood observations. 2010.

[24] Martin L Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.



Learning transferable visual models from natural lan-
guage supervision. arXiv preprint arXiv:2103.00020,
2021.

[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object
detection. In Proc. of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.
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