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Abstract

For modern robots that are equipped with a set of skills, such as manipulation and nav-

igation, it’s crucial that they can autonomously make decisions to complete tasks over ex-

tended periods of time. To this end, researchers have been developing planning algorithms

that allow robots to effectively sequence and use their skills to reach specific task-level

goals. Existing planning systems have a strong reliance on structured and predictive world

models which are often represented as symbol tokens. Symbol grounding is thus required

to establish a meaningful connection between these abstract symbols and their real-world

interpretations that robots can understand. A fundamental approach to symbol grounding

for robots involves utilizing their perception capabilities, allowing the mapping of sensory

readings to symbol tokens and thereby assigning perceptual meanings to symbols. Addi-

tionally, robots frequently need to plan their actions in the process of grounding, given robot

actions being tightly coupled with perception. Motivated by the above observations, this

dissertation focuses on 1) symbol grounding using perception and action, and 2) robot plan-

ning with grounded symbols. Our research draws on theories and methods from computer

vision and machine learning with both being integrated with AI planning and continuous

motion planning towards building long-horizon robot autonomy.
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1 Introduction

In recent years, service robots are playing an increasingly important role, taking on

complex, long-horizon tasks such as searching for objects, setting up tables, loading dish-

washers, and organizing bookshelves. For robots that are equipped with a set of skills (e.g.,

manipulation and navigation), it’s crucial that they can make decisions for task completion

over extended periods of time. To achieve this, robotics researchers have been developing

planning algorithms that support robots to effectively sequence and use their skills to reach

specific goals [1].

Existing planning systems have a strong reliance on structured and predictive world

models, enabling robots to reason about how the world is represented and functions so as

to make accurate decisions. Symbolic representations are widely used in modeling world

states and transitions [2]. Consider a robot given a task of “Moving the red and empty

coke can from the table to the chair.” Symbol tokens such as red and empty can repre-

sent perceivable attributes of the coke can that the robot searches for [3]. near(robot,

chair) can represent a robot physically being at a state that is close to the table [4, 5]

and getting ready for picking up the target coke can. In reality, such world states, as op-

posed to a set of discrete symbols, are usually perceived through sensors while robots are

operating in their continuous workspaces. Hence, a significant challenge persists in estab-
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lishing a meaningful connection between these abstract symbols and their real-world inter-

pretations that robots can understand, which is commonly known as the symbol grounding

problem [6]. In this dissertation, we aim to address the symbol grounding problem by

developing novel frameworks and algorithms that bridge the gap between symbolic repre-

sentations and the continuous real-world observations made by robots. Furthermore, we

utilize grounded symbols for advancing the field of robotic planning, making planning sys-

tems more adaptable, robust, and capable in unstructured and dynamic environments.

Breaking down the grounding problem and its robotic application, the first topic of this

dissertation purely focuses on symbol grounding for robots, answering the question of:

How can robots ground symbols through perception and actions?

This grounding process is challenging because the robot has to first overcome imperfect

perception due to sensor noise and partial observability [7]. This challenge usually persists

in grounding symbols that have rich perceptual meanings such as attributes of objects. As

an example, the empty attribute of an opaque can will always remain partially observable

to the robot. Thus, robots frequently need to use their actions in the process of grounding,

given robot actions being tightly coupled with perception [8]. For the purpose of identifying

the empty symbol, the robot also needs to decide which of its many exploratory actions

to perform on an object in order to effectively identify one specific symbol. From a human

perspective, it is preferred to shake the object to figure out if it is empty according to the

multimodal sensory information (e.g., sound) it produces, instead of taking a poke action

which is less informative.

Grounding symbols that particularly have spatial meanings frequently requires mo-

2



bile manipulation capabilities. Consider an approach for grounding the near(robot,

table) symbol, the robot needs to first take a navigation action to the table for estimating

the distance from itself to the goal (e.g., the Euclidean distance between two points in the

occupancy grid map) while accounting for unpredictable navigation noise. Then the robot

may want to make sure the robot base is close enough by attempting to grasp an object

on the table, such that near(robot, table) also becomes meaningful for successful

manipulation [9, 10]. As the robot operates in cluttered environments, non-deterministic

action outcomes at the motion level introduce an additional dimension of complexity to

the above grounding process [11]. Navigation actions frequently lead to the robot being

at slightly different locations from the exact given goals, and manipulation actions such as

grasping is also an unsolved problem that many robotic researchers have been investigated

for decades.

The second topic of this dissertation is on applying grounded symbols to robotic plan-

ning. Specifically, we investigate:

How grounded symbols facilitate robot task and motion planning for everyday

tasks?

and refer it as grounded planning in the dissertation. Task and motion planning (TAMP)

is one type of the planning algorithms that have been used for planning at both symbolic

(discrete) and geometric (continuous) levels, but it is not grounded in the sense that TAMP

assumes perfect perception and full knowledge about how the world functions. This dis-

sertation investigates a grounded version of TAMP that shares the same goal (i.e., com-

puting feasible plans for service robots) with original TAMP algorithms, but with visually

3
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Figure 1.1: This dissertation focuses on symbol grounding and its robotic application on
planning. Robots can use their action and perception capabilities to ground symbols, and
grounded symbols can in turn benefit task and motion planning for completing long-horizon
tasks.

grounded symbols in the task planner thereby removing the hard constraints of perfect per-

ception. Operating in larger domains further require robot actions that take relatively long

time (e.g., minutes or even hours as navigating from one location to another), where it is

advantageous for TAMP algorithms to incorporate both plan efficiency and action feasibil-

ity into the evaluation of plan qualities. However, without the previous strong assumptions

of deterministic action executions (made by classical planning), it will be much more chal-

lenging to achieve the optimality for grounded task and motion planning.

4



Table 1.1: Types of symbol grounding and the applied planning frameworks being used in
each chapter.

Chapters Types of Symbols Types of Grounding Planning Frameworks

4 object attributes interactive partially observable Markov decision process

5 spatial relationships data-driven task and motion planning

6 abstracted locations data-driven task and motion planning

To address the above challenges in symbol grounding and grounded planning, this dis-

sertation demonstrates our research drawing on theories and methods from computer vi-

sion and machine learning with both being integrated with symbolic task planning and

sampling-based motion planning. Specifically, related research will be discussed in the fol-

lowing chapters as: 1) Grounding object attributes through interactive perception (Chap-

ter 3); 2) Visually grounded task and motion planning (Chapter 4); and 3) Optimizing task

planners with grounded symbolic state space (Chapter 5). As summarized in Table 1.1,

Chapter 3 focuses on grounding objects’ attribute symbols with their perceivable mean-

ings. Chapter 4 focuses on grounding task planner’s symbolic predicates (i.e., spatial re-

lationships such as near), and applying them for optimizing task-motion plans. Finally,

Chapter 5 looks into constructing and grounding location symbols at the same time for

optimizing task planners’ state spaces.

1.1 Thesis Outline

The rest of this dissertation is structured into four chapters. Chapter 2 is a discussion

of important building blocks related to this study, including automated planning (i.e., task

planning), motion planning, and mobile manipulation. It is expected that this background

section will aid readers in better understanding the subsequent parts of the dissertation.

5



Chapter 3 discusses how to interact with objects and ground object attribute symbols

through exploratory actions. The robot task is to identify symbols such as red and empty,

and the grounding process is “interactive”, meaning the robot takes actions and grounds

symbols at the same time. In this work, we adapt partially observable Markov decision

processes (POMDPs) to sequence robot actions. The challenge for this interactive ground-

ing process is that it requires the robot to learn an accurate and efficient action policy over

the long term without pre-collected data. Attribute symbols from Chapter 3 are world rep-

resentations purely perceivable at the task level, so all the low-level action primitives being

used to ground such symbols can be predefined.

Chapter 4 discusses how to ground symbols that touch both task level and motion

level. The proposed algorithm visually grounds spatial relationships (i.e., near(robot,

table)), also known as the state-mapping function, to probabilistically evaluate action

feasibility, and is particularly suitable for large domains with long-term robot operations

(e.g., long-distance navigation). A “data-driven” approach is applied here for symbol

grounding, where we collected a dataset in simulation that includes robot’s past experience

on conducting mobile manipulation tasks where in each data instance, a robot unloads an

object with dynamic obstacles surrounding a table. The symbols of spatial relationships are

then grounded into a form of action heatmaps generated from Fully Convolutional Neural

Networks (FCNs) [12] that is trained on the collected data.

Location symbols from the above chapters are always predefined by a domain expert

who manually specifies a symbolic state space in the task planner. Nevertheless, manually

constructing state spaces might not be desirable in some scenarios. For instance, if each

object is placed at a separate symbolic location as defined in the task-level state space, the
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robot will always need to navigate before picking up the next object. This is because the

task planner believes only a navigation action can bring the robot to the location required by

the next manipulation action. In practice, however, the robot often picks up multiple objects

from a single position, for example, as restaurant waiters can easily identify a standing

location that allows them to pick up multiple dishes at once. Especially when objects

are located close to each other, it is unnecessary for the robot to navigate before every

manipulation. This observation motivates the development of Chapter 5 on optimizing task-

level state spaces with grounded symbolic locations for task planners to generate feasible

and efficient task-motion plans.

Finally, this dissertation concludes with a summary and an outlook on future work in

Chapter 6.

1.2 Other Doctoral Research

Apart from the works that are included in this dissertation [4, 3, 5], I have also spent

time conducting other research on robotic reasoning, planning and learning, briefly sum-

marized here.

GHAL360 is a human-involved learning framework that enables the Mobile Telepres-

ence Robots to learn a goal-oriented policy from reinforcements for guiding human at-

tention using visual indicators [13]. We have also used RL in robotic table wiping tasks

where we learned a policy using RL in simulation with a whole-body trajectory optimiza-

tion framework to realize the wiping action execution in real world [14]. One of our re-

cent works called SLAP uses imitation learning taking three-dimensional tokens as the

input representation to train a single multi-task, language-conditioned action prediction
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policy [15]. For planning research, TMPUD is one of the very first frameworks that ap-

plies task and motion planning in autonomous driving domains [16]. We then developed

Task-Motion Object-Centric planning (TMOC), a grounded TAMP algorithm that learns to

ground objects and their physical properties with a physics engine [17].

Recently, I have been focusing on improving robotic reasoning and planning capabil-

ities with foundation models. In LLM+P, we investigated how to use LLMs to translate

a complicated planning problem (in natural language) into PDDL so as a classical plan-

ner can be used to solve it [18]. COWP is an open-world task planning framework that

uses knowledge from LLMs for robot situation handling [19]. We further extend the usage

of LLMs to the motion level, where we introduced LLM-GROP, an algorithm extracting

commonsense knowledge from LLMs for object rearrangement using task and motion plan-

ning [20]. To benchmark high-level perception and reasoning with foundation models, we

proposed OpenEQA, the first open-vocabulary benchmark dataset for Embodied Question

Answering supporting both episodic memory and active exploration use cases [21].
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2 Background

Within this section, key concepts related to this dissertation are examined. The initial

focus is on automated planning (classical AI planning), which will be used as the main tool

for robot high-level task planning. Subsequently, there is an introduction of continuous

motion planning from the robotics perspective, where we will cover the main concept of

motion planning as well as two widely used sampling-based motion planning algorithms

(i.e., RRT and PRM). Finally, we discuss the robot platform being utilized in this research.

2.1 Classical Planning

Task planning, or AI planning, is a important field in artificial intelligence. It involves

generating a sequence of actions that leads to a specific goal while satisfying certain con-

straints. Essentially, the planning process uses a formal representation of the world state,

along with actions and their potential outcomes, to find a path from an initial state to a goal

state. As a process, it provides service robots with the capability to create a sequence of

actions, allowing them to operate autonomously in dynamic and open-world environments.

Planning Domain Definition Language (PDDL): The Planning Domain Definition Lan-

guage (PDDL), initiated by Drew McDermott and his associates in the late 90s, was created

to streamline research in automated planning [2]. PDDL aims to standardize the formula-
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tion of planning problems, thereby enhancing the comparability of different planning sys-

tems and algorithms by ensuring they are tackling identical issues.

PDDL structures planning problems around states and actions. States are depicted by

logical propositions, while actions are determined by their preconditions (the circumstances

necessary for their execution) and their effects (the changes in the world state resulting from

the action). A PDDL planning problem encompasses an initial state, a group of actions,

and a goal state. The primary task of a PDDL planner is to identify a series of actions that

metamorphose the initial state into the goal state.

PDDL expresses planning problems in terms of states and actions. States are defined

by logical propositions, and actions are defined by their preconditions (what must be true

for the action to be executed) and their effects (what changes in the world state as a result

of the action). A planning problem in PDDL consists of an initial state, a set of actions, and

a goal state. The goal of a PDDL planner is to find a sequence of actions that transforms

the initial state into the goal state.

In practical use, a PDDL problem will have two separate files: a domain file and a

problem file. The domain file contains the definition of all the actions, including their

preconditions and effects. The problem file describes the initial state and the goal state.

For a service robot, using PDDL means that it can reason about actions it should take

based on its understanding of the world’s state and its goal. It represents an effective and

flexible tool for defining and solving planning problems in open world scenarios.

Answer Set Programming (ASP): Answer Set Programming (ASP) is a declarative pro-

gramming paradigm rooted in research on non-monotonic logic and logic programming [22,
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23]. Initially designed for problem-solving using the concept of “answer sets” or stable

models, ASP is particularly effective for tackling combinatorial search problems.

The power of ASP lies in its ability to frame problems in terms of logical rules. An

ASP solver then seeks solutions that comply with all given rules. These solutions, termed

“answer sets,” epitomize models of the program, encompassing a set of facts validated by

the prescribed rules.

In ASP, problems are encapsulated by a logic program composed of a set of rules.

Each rule features a head and a body. The notion is that the rule’s head is valid if all the

conditions in the rule’s body are met. Utilizing this principle, ASP solvers compute the

answer sets.

Emerging from research on non-monotonic logic and logic programming, ASP provides

a robust language for defining problems. The logic rules encode the problems, and the ASP

solver computes their solutions, i.e., the ”answer sets.” An answer set is essentially a model

of the problem’s logic program and thus signifies a solution.

ASP finds its utility in automated planning, particularly when defining complex plan-

ning problems using a high-level, logic-based language. This characteristic makes it espe-

cially valuable for service robots operating in environments that require intricate reasoning

or knowledge handling with inherent uncertainty. Through ASP, these robots can formulate

sets of actions (plans) that satisfy multiple constraints and achieve the desired goals.

Comparison of PDDL and ASP: PDDL and ASP, both effective in representing and re-

solving planning issues, rely on a declarative, logic-based methodology. This allows for a

flexible problem representation and the application of advanced reasoning techniques.
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The significant divergence resides in their expressive capacity and solving strategies.

PDDL, as a language, accentuates the representation of states and their transitions induced

by actions. This makes it ideal for typical AI planning problems, characterized by an initial

state, a goal state, and an intervening set of actions.

ASP, conversely, provides for more intricate problem definitions due to its rule-based

structure. It is equipped to tackle issues that demand sophisticated reasoning techniques,

such as managing defaults and exceptions. The solving procedure in ASP revolves around

identifying models that adhere to a specific set of rules rather than merely discovering a

sequence of actions that lead to a goal.

The practical choice between PDDL and ASP is predicated upon the unique require-

ments of the problem being examined. PDDL is potentially more apt for problems that can

be interpreted naturally as state transitions, while ASP might be a better fit for problems

that call for complex logical reasoning.

From my experience, contemporary PDDL solvers are inclined to deliver a single so-

lution. This approach, while being computationally efficient, inherently limits the explo-

ration of all possible solutions. A more exhaustive study of the solution space could reveal

superior or diverse plans that satisfy the defined constraints.

In contrast, ASP offers heightened flexibility. With configurations that can present all

possible plans, ASP solvers provide a thorough set of solutions. This comprehensive view

enables a rigorous evaluation and comparison of various strategies, potentially leading to

optimal or diverse solutions that address the needs.

While not asserting the dominance of one over the other, this comparison clarifies

a marked operational distinction between PDDL and ASP. The choice between the two
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should reflect the specific demands of the problem. A PDDL solver might be more suitable

if the focus is on computational efficiency and finding a single feasible solution. Con-

versely, if the problem calls for an extensive examination of all possible solutions for a

detailed evaluation, an approach centered on ASP may be more appropriate.

2.2 Motion Planning

Motion planning is a fundamental concept in robotics concerned with finding a se-

quence of valid movements that would get an object from the start point to the goal point

without colliding with any obstacles in the environment. This aspect of robotics is espe-

cially critical in service robotics, where robots must navigate complex, dynamic, and open

worlds while performing tasks.

The challenge of motion planning increases exponentially with the dimensionality of

the problem, hence it often relies on algorithms and mathematical models. Two popular

techniques used in motion planning are the Rapidly-exploring Random Trees (RRT) [24]

and the Probabilistic Roadmaps (PRM) [25].

RRT: Rapidly-exploring Random Trees (RRT) is an efficient, randomized data structure

designed for a broad class of path planning problems. The core idea of RRT is that it builds

a tree rooted at the starting configuration by using random samples from the search space.

As a “greedy” algorithm, it has a preference for exploring unvisited regions.

An RRT grows a tree in the configuration space by starting at the robot’s initial config-

uration (root of the tree) and expanding towards randomly chosen configurations. The tree

eventually spans much of the reachable space, and with a high likelihood, it will reach a
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point near the target configuration. Once this happens, the path from root to target config-

uration provides a solution to the motion planning problem.

PRM: Probabilistic Roadmaps (PRM) is another popular method for motion planning.

Unlike RRT, which builds a tree, PRM constructs a graph (the roadmap) over the entire

planning space. It works by taking random samples from the configuration space of the

robot, testing them for validity (e.g., collision), and using a local planner to attempt to

connect these configurations to other nearby configurations.

PRM tends to work well in multiple query scenarios, where there is a significant pre-

processing phase, after which a series of goal configurations are given. The roadmap con-

structed can then be used to find paths quickly for any given start and goal configuration

pair provided they are connected in the roadmap.

Both RRT and PRM are examples of sampling-based planning methods, which solve

high-dimensional problems by avoiding an explicit representation of the configuration space.

Instead, they generate samples and then connect these samples in a manner that tries to cap-

ture the connectivity of the free space.

2.3 Mobile Manipulation Platform

Our research mainly uses a mobile manipulator robot platform. It is a Segway-based

mobile robot platform, the RMP110, for experimental trials. This mobile manipulator is

equipped with a UR5e robot arm and a Robotiq Hand-E gripper. The platform incorporates

a SICK laser sensor for tasks such as mapping, localization, and navigation. Additionally,

an Astra Orbbec RGB-D camera is employed for human detection, interaction, and a wrist

14



camera is used for object detection and vision-based object grasping.

The robot’s software operates on the Robot Operating System (ROS) [26] and is built

upon the publicly available Building Wide Intelligence codebase [27]. This allows the robot

to navigate and manipulate objects, including grasping and ungrasping, using MoveIt [28]

and GGCNN.

Additionally, we have developed a simulation platform based on the Gazebo physics

engine [29]. A difference is the use of the robotiq 2F-85 gripper in the simulation, as the

urdf model for the Hand-E is unavailable.
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3 Multimodal Embodied Attribute Learning

3.1 Introduction

Intelligent robots are able to interact with objects through exploratory actions in real-

world environments. For instance, a robot can use a look action to figure out if an object

is RED using computer vision methods. However, vision is not sufficient to answer if an

opaque bottle is FULL or not, and actions that support other sensory modalities, such as lift

and shake, become necessary. Given the sensing capabilities of robots and the perceivable

properties of objects, it is important to develop algorithms to enable robots to use multi-

modal exploratory actions to identify object properties, answering questions such as “Is

this object RED and EMPTY?” In this article, we use attribute to refer to a perceivable

property of an object and use behavior1 to refer to an exploratory action that a robot can

take to interact with the object. 2

Given multimodal perception capabilities, a robot still needs to decide which of its

many exploratory behaviors to perform on an object. In other words, the robot needs to

generate an action policy for each given language request, as illustrated in Figure 3.1. For

instance, to obtain an object’s color, a robot could adjust the pose of its camera, whereas

1The terms of “behavior” and “action” are widely used in developmental robotics and sequential decision-
making communities respectively. In this article, the two terms are used interchangeably.

2Project webpage: https://sites.google.com/view/attribute-learning-robotics/
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grasp shakelook

proprioceptionhapticsaudioshapecolor

What actions should I take?Is this object RED and EMPTY?

Figure 3.1: A robot is tasked with identifying if an object is RED and EMPTY. Given the
various sensory modalities produced by exploratory behaviors, the robot must decide what
behavior(s) to perform to gain maximum information.

sensing the content of an opaque container requires two behaviors: grasp and shake. The

robot has to select actions in such a way that the information gain about object attributes is

maximized while the cost of behaviors is minimized. Sequential reasoning is required in

this action selection process. For example, shake would make sense only if grasp has been

successfully executed. Also, robot perception capabilities are imperfect, so the robot some-

times needs to take the same behavior more than once. The above-mentioned observations

motivate the development of this article focusing on the Multimodal Embodied Attribute

Learning (MEAL) problem. We informally define MEAL as follows:

Algorithms for MEAL problems aim to learn a policy for sequentially select-

ing exploratory behaviors to efficiently and accurately identify perceivable at-

tributes of objects. Those behaviors might involve multiple sensory modalities

and are not necessarily always successful.
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The capability of solving MEAL problems is important for robot multimodal perception. In

this article, we introduce and investigate two types of MEAL problems: offline and online.

Algorithms for OFFLINE-MEAL problems aim to learn robot behavioral exploration poli-

cies from a previously collected dataset. Probabilistic planning algorithms aim at comput-

ing action policies to help select actions toward maximizing long-term utility such as infor-

mation gain in our case, while considering the uncertainty resulting from non-deterministic

action outcomes. Markov decision processes (MDPs) [30] and partially observable MDPs

(POMDPs) [31] enable an agent to plan under uncertainty with full and partial observability

respectively. However, the observability of real-world domains is frequently mixed: some

components of the current state can be fully observable while others are not. A mixed ob-

servability Markov decision process (MOMDP) is a special form of POMDP that accounts

for both fully and partially observable components of the state [32]. In the ONLINE-MEAL

setting, the robot needs to learn an accurate and efficient action policy for interacting with

objects without pre-collected data. As a result, algorithms for ONLINE-MEAL problems are

required to work on attribute classification and identification at the same time. ONLINE-

MEAL raises the fundamental trade-off between exploration and exploitation. The robot has

a short-term goal of identifying object attributes in the current task, and a long-term goal

of improving its identification accuracy over multiple tasks. An extreme solution is to let

the robot optimize its actions focusing on only the short-term goal. In doing so, the robot

still improves its performance in identification tasks over a long term as the robot collects

data along the way. However, the learning process in this extreme solution can be poor

with respect to regret minimization, because it lacks a mechanism for actively improving

its long-term attribute identification performance.
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• This article introduces Mixed Observability Robot Control (MORC), as the first al-

gorithmic contribution of this article, where we model OFFLINE-MEAL problems

using MOMDPs because of the mixed observability of the world that the robot in-

teracts with. For example, whether an object is in the robot’s hand or not is fully

observable, but object attributes such as color and weight are not.

• The second algorithmic contribution of this article is an algorithm which is called

MORC with Information-Theoretic Reward Shaping (MORC-ITRS) for ONLINE-MEAL

problems. MORC-ITRS, for the first time, equips a robot with the capability of op-

timizing its sequential action selection toward efficiently and accurately classifying

and identifying attributes at the same time.

MORC and MORC-ITRS are evaluated using three datasets: ISPY32 [33] which con-

tains 32 objects with eight exploratory behaviors and six types of sensory modalities;

ROC36 [34] which includes 36 objects with eleven behaviors and four types of modali-

ties; CY101 [35] which has 101 objects with ten behaviors and seven types of modalities.

These datasets have previously been used for a variety of tasks including language ground-

ing [36, 37], object recognition [38], object categorization [39], and sensorimotor learning

[40]. Experiments on OFFLINE-MEAL problems show that the policies from MORC improve

accuracy for recognizing new objects’ attributes while reducing exploration cost, in com-

parison to baseline strategies that deterministically or randomly use predefined sequences

of behaviors. For ONLINE-MEAL settings, compared with existing methods from the MEAL

literature which also include a variant of MORC, MORC-ITRS reduces the overall cost of ex-

ploration in the long term while reaching a higher accuracy of attribute identification.
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Initial versions of the MORC and MORC-ITRS algorithms were introduced in two sepa-

rate conference papers [7, 41]. Both papers aimed to enable a robot manipulator to identify

object attributes using multiple exploratory behaviors and the produced multimodal sen-

sory data. Both papers modeled the non-determinism of action outcomes, and exploration

costs using a sequential decision-making framework under partial observability. Despite

the shared goals, the two conference papers were developed under different assumptions.

Next, we describe the relationship between this article and the two previous papers in the

three dimensions of “problem,” “algorithm,” and “evaluation.”

• Problems. This article aims to solve two problems called OFFLINE-MEAL and ONLINE-

MEAL. The two problems were initially defined under the respective names of Robot

Attribute Identification (RAI) and Online Robot Attribute Learning (On-RAL) [41].

We observed that the initial problem statements [41] were incomplete, because nei-

ther the objective function nor the reward function was included in the definitions.

We have fixed the issues in this article, and renamed the problems for better clarity.

• Algorithms. This article develops two algorithms called MORC and MORC-ITRS.

Our naming strategy highlights that MORC-ITRS is based on MORC. The key idea of

MORC was initially presented in a conference paper [7], where it was only informally

described. MORC-ITRS was initially presented in another [41] under the name of

ITRS. This article formally defines both algorithms using the terminology specified

in the corresponding problem statements.

• Evaluations. The evaluation of MORC [7] was based on the two datasets of ISPY32

and ROC36. The evaluation of MORC-ITRS [41] was based on the two datasets of
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ISPY32 and CY101. The different datasets in the two conference papers made it

hard to directly compare the different methods. In this article, new experiments were

performed to include all three datasets in the evaluations.

In addition, we discuss related work more comprehensively and point out the limitations of

both algorithms while identifying research directions for future work.

The remainder of this article is organized as follows. Section 3.2 discusses existing

research on MEAL-related topics. Section 5.3 formally defines three MEAL problems, in-

cluding the OFFLINE-MEAL and the ONLINE-MEAL. Section 3.4 presents existing research

on Action-Conditioned Attribute Classification (ACAC), which serves as a building block

of algorithms and systems developed in this article. Sections 3.5 and 3.6 describe two

algorithms respectively: MORC for OFFLINE-MEAL and MORC-ITRS for ONLINE-MEAL.

Experimental results and demonstrations are detailed in Section 3.7. The article is con-

cluded in Section 3.8, including discussions about the limitations of our algorithms and

directions for future work.

3.2 Related Work

This section summarizes a few research areas that are relevant to Multimodal Embodied

Attribute Learning (MEAL), the focus of this article. We first briefly describe the concept

of “attribute”, which is widely used in the computer vision community, and then discuss

existing research on robot perception (unimodal and multimodal). After that, a representa-

tive sample of algorithms for planning under uncertainty is described, based on which we

develop MORC and MORC-ITRS. Finally, we present existing work on object-centric robot
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perception, which is the application domain of this article.

Visual Attribute Learning The word “attribute” refers to as “an inherent characteris-

tic” of an object in the computer vision community [42]. Attributes are also semantic and

machine-understandable properties that are used by people to describe images [43]. Early

vision-based attribute learning methods used image segments to learn visual attributes as

patterns [44]. Later, researchers studied visual attribute learning in the context of gen-

eralization across object categories [45], and considered transferring visual attributes for

previously unseen object classes [46]. More recent approaches focused on zero-shot or

few-shot learning for specifying attributes [47, 48, 49], relative attributes to enable visual

comparisons between images [50, 43], and attributes for an unconstrained set of objects by

providing large-scale datasets [51, 52, 53]. In contrast to traditional attribute learning us-

ing these vision methods, we focus on Multimodal Embodied Attribute Learning (MEAL),

where objects are explored and attributes are detected by a physical robot. Modern robots

have the capability to actively interact with objects, producing rich sensory signals that go

beyond vision.

Early research on symbol grounding introduced the term of “category” as an invariant

feature of objects and events from their sensory projections [6]. In this article, we focus

on object-centric robot perception, and use “attribute” to refer to the categorical represen-

tations of object features that are perceivable through a robot’s multimodal exploratory

behaviors.
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Unimodal Perception in Robotics Among various modalities that have been researched

in robotics, visual perception has been widely studied, including visual manipulation [54]

and navigation [55]. Language is another important modality that robotics researchers fre-

quently focus on, solving the challenge of grounding natural language into noisy percepts

and physical actions (as reviewed in a recent article [56]). Tactile sensing is traditionally

studied in the area of sensors, but recent papers have investigated more about correlations

with robot actions, as reviewed in articles [57, 58]. There are also a few works that demon-

strate the usefulness of smell for robots, especially in the application domain of gas source

localization [59]. A limited number of papers have even mimicked the sense of taste for the

interaction and cognitive abilities of modern robots [60]. Every single modality has been

shown its effectiveness towards improving the perception capability of intelligent robots.

Our agent learns from sensory modalities such as vision, audio, and haptics, and works

on the problem of robot multimodal perception, which is reviewed in detail in the next

paragraph.

Multimodal Perception in Robotics Significant advances have been achieved recently

in computer vision [61, 62] and natural language processing [63, 64]. While language and

vision are important communication channels for robotic perception, many object attributes

cannot be detected using vision alone [65] and people are not always available to verbally

provide guidance in exploration tasks. Therefore, researchers have jointly modeled lan-

guage and visual information for multimodal text-vision tasks [66]. However, many of the

most common nouns and adjectives such as SOFT and EMPTY have a strong non-visual

component [67] and thus, robots need to perceive objects using additional sensory modal-
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ities to reason about and perceive such linguistic descriptors. To address this problem,

several lines of research have shown that incorporating a variety of sensory modalities is

the key to further enhancing the robotic capabilities in recognizing multisensory object

attributes, as reviewed in recent articles [68, 58]. For example, visual and physical interac-

tion data yields more accurate haptic classification for objects [69], and non-visual sensory

modalities, such as audio and haptics, coupled with exploratory behaviors such as touch

or grasp, have been shown useful for object recognition [70, 71, 72]. Grounding natural

language descriptors that people use to refer to objects has also been a promising method

for attribute recognition problems [33, 73]. More recently, researchers have developed end-

to-end systems to enable robots to learn to perceive the environment and perform actions at

the same time [74, 75]. A major limitation of these and other existing methods is that they

require large amounts of object exploration data, which is much more expensive to collect

as compared to vision-only datasets. A few approaches have been proposed to actively

select actions at test time, for instance, when recognizing an object [76, 39]. One recent

work has also shown that robots can bias which behavior to perform at training time, that

is, when learning a model grounded in multiple sensory modalities and behaviors, but they

did not learn an actual policy for doing so [37]. Different from existing work, MORC for

OFFLINE-MEAL problems is for learning an action policy when deciding whether a set of

attributes hold true for an object. MORC-ITRS for ONLINE-MEAL problems learns an action

policy for object exploration that a robot can use when learning to ground the semantics of

attributes.
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Planning under Uncertainty Decision-theoretic methods have been developed to help

agents plan actions and address uncertainty in non-deterministic action outcomes [30, 77].

Existing planning models such as partially observable Markov decision process (POMDP) [31],

belief space planning [78] and Bayesian approaches [79] have shown great advantages for

planning robot perception behaviors, because robots need to use exploratory behaviors to

estimate the current world state. To learn semantic attributes, robots frequently need to

choose multiple actions, so POMDP which is useful for long-term planning is particularly

suitable. Many of the POMDP-based robot perception methods are vision-based [80, 81,

82, 83]. Compared to those methods, our robot takes advantage of non-visual sensory

modalities, such as audio and haptics. Our proposed algorithms both modeled the mixed

observability [32] in domains of a robot interacting with objects. The main difference be-

tween OFFLINE- and ONLINE-MEAL is that the former assumed that sufficient training data

and annotations are available for the robot to learn the perception models of its exploratory

behaviors, and the latter deals with data collection and task completion processes simulta-

neously.

Object-centric Robot Perception To select actions to identify objects’ perceivable at-

tributes such as HEAVY, RED, FULL, and SHINY, robots need observation models for their

exploratory behaviors. Researchers have developed algorithms to help robots determine

the presence of possibly new attributes [84] and learn observation models of objects’ per-

ceivable attributes given different exploratory behaviors [33, 36, 85]. In the case where

the object attributes refer to the object’s function, they are then referred to as 0-order af-

fordances [86]. Those methods focused on learning to improve the robots’ perception
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capabilities. Once the learning process is complete, a robot can use the learned attributes

to perform tasks, such as attribute identification, for example, to tell if a bottle is HEAVY

and RED. Compared to those learning methods, we consider both OFFLINE- and ONLINE-

MEAL, where the robot learns the attribute classifiers (an exploration process) and uses the

learned classifiers to identify object attributes (an exploitation process). Because ONLINE-

MEAL agents iteratively learn and identify attributes, the exploration-exploitation trade-off

is a fundamental decision-making challenge in this unknown robot perception environment.

While the problem has been studied in multi-armed bandit [87] and reinforcement learning

settings [77], it has not been studied in MEAL contexts.

3.3 Problem Definitions

In this section, we first introduce the terminology of our work. Then we formally define

three types of robot multimodal perception problems.

A robot has a set of behaviors, such as look, push, and lift, that can be used for interacting

with everyday objects as shown in Figure 3.2. Let o ∈ Ob j be an object and a ∈ A e be

an exploratory behavior. Examples of a robot executing some of the exploration behaviors

are shown in Figure 3.3.

Each exploratory behavior is coupled with a set of sensory modalities, e.g., vision,

haptics, and audio. We use m ∈M to refer to a sensory modality. This behavior-modality
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Table 3.1: Table of Notation.

Symbol/Notation Definition

o An object
Ob j The set of all objects
a A behavior
A e The set of all exploratory behaviors
m A modality
M The set of all modalities
Γ(a) A behavior and modality coupling function
Ma A set of modalities that a behavior a produces
f m
a A sensory data instance of a modality m being recorded

when a behavior a is applied
fa A set of sensory data instances from all modalities (m ∈Ma)

that a robot receives after performing a
Nm Dimensionality for a modality m
P The set of all attributes
p An attribute
vp The Boolean value of an attribute p indicating if p applies to an object
ID(p,o) An attribute identification function
v Values of a set of attributes
p A set of attributes
A r The set of all reporting actions
A The set of all actions including exploratory behaviors and reporting actions
S The global state space
X The state set specified by fully observable domain variables
x A fully observable state
Y The state set specified by partially observable domain variables
y A partially observable state
N p The number of queried attributes
Z A set of observations including /0 (none) observation
Z h A set of observations excluding /0 (none) observation
R(s,a) The reward function
ta Time length for executing a behavior a
r− Negative reward by given an incorrect report action
r+ Positive reward by given a correct report action
ξ An episode for representing a single attribute identification task
s⊘a An operation that outputs true (or false)

when the identification task is successful (or not)
Rst(ξ ) A function that outputs if a task is successful
Cst(ξ ) A function that outputs the accumulative action cost in a task
D A dataset where each instance is in the form of ( fa, p) : vp

Ψ( fa, p) A binary classifier. A robot collect data instance fa on an object
after performing action a, and Ψ( fa, p) outputs if attribute p applies to
this object

Ĉ An action cost budget
Φ( f m

a , p) A binary classifier that is similar to Ψ( fa, p)
but with modality specifications

α A normalization constant
wm

a A weight for a binary classifier Φ( f m
a , p)

Θa
p A confusion matrix that are computed by cross-validation at training stage

TX Transition functions for fully observable states in MOMDP
TY Transition functions for partially observable states in MOMDP
γ A discount factor in MOMDP
O(s,a,z) An observation function that specifies the probability of observing z

when action a is executed in state s
vpi

s The true value of the ith attribute in state s
vpi

z The observed value of the ith attribute in observation z
Ent(s,a) The entropy that is used for indicating the perception quality
IE(s,a) The interaction experience of applying action a to identify attribute p
δ A sufficiently large integer to ensure IE(s,a) is the range of [0,1)
α A natural number for adjusting Ent(s,a)
β A natural number for adjusting IE(s,a)
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(a) (b)

(c)

Figure 3.2: Everyday objects in the three datasets that are used in the experiments of this
article: (a)ISPY32 [33] (b)ROC36 [34] (c)CY101 [35].

coupling is formulated using function Γ:

Ma = Γ(a) (3.1)

where Ma ⊆M . For example, {audio,haptics,vision} = Γ(push) means that behavior

push produces signals from audio, haptics, and vision modalities. When a is performed

on an object o, for each m ∈Ma, the robot is able to record a data instance f m
a ∈ RNm

,

where Nm is the dimensionality for the modality m. Table 3.2 shows the set of viable

combinations of behavior-modality pairs for one of the datasets used in our experiments

(detailed in Section 3.7), along with the feature dimensionality Nm. We use fa to represent

a set of sensory data instances from all modalities (m ∈Ma) that a robot receives after

performing a.
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grasp (22.0s) lift (11.1s) lower (10.6s)

drop (9.8s) push (22.0s) press (22.0s)

Figure 3.3: Examples of behaviors and their durations in seconds (behaviors are from the
ISPY32 dataset detailed in Section 3.7).

Let P specify a set of attributes that are used to describe objects in a domain. Given

an object o, vp is either true or false, depending on if p applies to o, where we use ID(p,o)

to refer to this attribute identification function. Here we “override” the function ID to use

it to process a set of attributes:

v = ID(p,o) (3.2)

where v = [vp0,vp1, · · · ], p = [p0, p1, · · · ], and vpi is the value of the ith attribute of object o.

For instance, given a red empty object (i.e., o) and two attributes [BLUE,EMPTY] (i.e., p),

ID([BLUE,EMPTY],a red empty object) outputs [ f alse, true]. The reporting action set A r

includes actions that are used for the robot to report v to the human user. For the same red

empty object, there will be two binary variables specifying whether each of the attributes

is true or false. As a result, there will be four reporting actions corresponding to the four

combinations of the attributes’ values. The action set A = A e∪A r.

The robot state space is mixed observable and has two components, X and Y . The
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Table 3.2: The number of features extracted from each combination of robot behavior and
perceptual modality for ISPY32. “VGG” modality is computed from 2D image of the
object and is deep visual features from the 16-layer VGG network [33].

Behavior Modality

color shape VGG

look 64 308 4096

audio haptics proprioception

grasp 100 60 20
drop, hold, lift, lower, press, push 100 60

global state space S includes a Cartesian product of X and Y ,

S = {(x,y) | x ∈X and y ∈ Y } (3.3)

X is the state set specified by fully observable domain variables. In our case, x ∈X rep-

resents the current state of the robot-object system, e.g., whether lift and drop behaviors are

successful or not, or whether the object is in hand or not (i.e., the effect of behavior grasp).

Y is the state set specified by partially observable domain variables. In our case, these

variables correspond to the values of object attributes that are queried about, i.e., v. Thus,

| Y |= 2N p
, where N p is the number of queried attributes, i.e., | p |. For instance, given an

object description that includes three attributes (e.g., [RED,EMPTY,BOTTLE]), Y includes

23 = 8 states. Since y ∈ Y is partially observable, it needs to be estimated through obser-

vations, which will be defined in the next paragraph. Note that there is no state transition

in the space of Y , as we assume object attributes do not change over executions of robot

actions.

Let Z = Z h∪ /0 be a set of observations. Elements in Z h include all possible combi-

nations of object attributes (i.e., v) and have one-to-one correspondence with elements in
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A r. For instance, when p = [RED,EMPTY,BOTTLE], there exists an observation z ∈ Z h

that is [true, false, true] that represents “the object’s color is red; it is not empty, and it is a

bottle.” Behaviors that produce no information gain (including those failed behaviors) and

reporting actions in A r result in a /0 (none) observation.

R→ R is the reward function. Each exploration behavior, ae ∈ A e, has a cost that

is determined by the time required to complete the behavior. These costs are empirically

assigned according to the datasets used in this research. The costs of reporting actions

depend on whether the report is correct.

R(s,a) =



−ta, if s ∈ S, a ∈A e

r−, if s ∈ S, a ∈A r, s⊘a = false

r+, if s ∈ S, a ∈A r, s⊘a = true

(3.4)

where ta is the time length for executing the behavior a, r− (or r+) is negative (or positive)

given an incorrect (or correct) report. s⊘ a outputs true (or false) when the identification

task is successful (or not). We further define an episode as ξ = [s0,a0,r0,s1,a1,r1, · · · ] for

representing a single attribute identification task, where si ∈ S, ai ∈A , and ri ∈ R. Function

Rst(ξ ) outputs if a task ξ is successful:

Rst(ξ ) =


1, if there exists si,ai ∈ ξ , si ∈ S, ai ∈A r, si⊘ai = true

0,otherwise

(3.5)
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Function Cst(ξ ) outputs the accumulative action cost in task ξ :

Cst(ξ ) = ∑
ai∈A e

tai =− ∑
ai∈A e

ri(s,ai) (3.6)

Definition 1 (ACAC). At training time, the input includes a set of labeled sensory data

instances, each in the form of ( fa, p) : vp. This training set is sufficiently large and denoted

as D . Solving an Action-Conditioned Attribute Classification3 (ACAC) problem produces

a binary classifier:

Ψ( fa, p), for each pair of a ∈A e and p ∈P

At testing time, given an object o, a robot collects data instances fa after performing action

a and Ψ( fa, p) outputs true or false estimating if attribute p applies to o.

Definition 2 (OFFLINE-MEAL). Solving an OFFLINE-MEAL problem produces a policy π

that sequentially selects action a ∈A to identify the value of:

ID(p,o), given D ,R(s,a)

where the objective is to maximize the number of successful task completions within a cost

budget Ĉ. Let [ξ0,ξ1, · · · ,ξn] be a set of n attribute identification tasks, then the objective

3We use attribute classification to refer to the problem of learning the attribute classifiers, which is a su-
pervised machine learning problem. We use attribute identification to refer to the task of identifying whether
an object has a set of attributes or not, which corresponds to a sequential decision-making problem.
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function can be defined as follows:

argmax
π

(E(∑
i≤n

Rst(ξi))),where ∑
i≤n

Cst(ξi)< Ĉ (3.7)

Definition 3 (ONLINE-MEAL). Solving an ONLINE-MEAL problem produces a policy π

that sequentially selects action a ∈A to identify the value of:

ID(p,o), given R(s,a)

OFFLINE- and ONLINE-MEAL share the same objective function (Equation 3.7), while al-

gorithms for ONLINE-MEAL are not provided with pre-collected data D . At execution time,

after performing a to identify p, the robot collects data fa. After each identification task,

the robot receives v, the values of attributes p.

Remark 1: MEAL agents are developed under the following assumptions (detailed in this

section and highlighted here):

• the state space is mixed observable: the fully observable component is predefined

and the partially observable component is specified by the queried attributes.

• robot actions and their realizations are predefined, including knowledge about the

target object’ precise location on the table.

• there is uncertainty in action outcomes, simulated by a certain probability.

• the goal is to maximize both long-term utility (lifelong learning) and short-term util-

ity (maximizing success rate of the current task).
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Remark 2: Rational OFFLINE-MEAL agents treat individual attribute identification tasks

independently, whereas rational ONLINE-MEAL agents learn from the data collected in

early tasks, trading off early-phase performance for long-term performance.

Remark 3: One might have noticed the difference between the objective function defined

in Equation 3.7 and the reward function in Equation 3.4. There can be the question of

whether our reward function supports the robot in achieving the objective or not. Note that

the objective function presented in Equation 3.7 includes two dimensions: identification

accuracy and exploration cost. The reward function presented in Equation 3.4 includes

three terms, where action execution time ta corresponds to the exploration cost, and rewards

r− and r+ correspond to the identification accuracy. Altogether, this reward function is able

to motivate the robot to maximize identification accuracy and minimize exploration costs

at the same time. Thus, our current reward function supports computing policies towards

achieving the objective.

3.4 Preliminaries

The algorithms developed in this article rely on existing research on Action-Conditioned

Attribute Classification (ACAC). For the sake of completeness, we summarize the technical

approach of previous ACAC work [34, 33], which is used as a building block for defining

algorithms for MEAL problems.

We define individual classifiers for connecting data instances f m
a to each attribute p,

denoted as Φ( f m
a , p). We assume that the outputs of Φ can be mapped to probabilities, i.e.,

Φ( f m
a , p) can estimate Prm

a (v
p = true | f m

a ). In line with prior research [34, 33], individual

classifiers Φ were structured using support-vector machines with a polynomial kernel in
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this article. The binary classifier Ψ (introduced in Section 5.3) is for connecting a set of

Φ( f m
a , p) regardless of modality specifications. Similarly, the outputs of Ψ can be mapped

to probabilities, i.e., Ψ( fa, p) can estimate Pra(vp = true | fa). It should be noted that for

each behavior, different modalities are not equally preferred when the robot identifies cer-

tain attributes. For instance, color is more useful than shape when identifying RED. Thus,

the probability estimates of Φ are combined using weighted combination and normalized

again to compute the final probability estimates of Ψ:

Pra(vp = true | fa) = α×∑wm
a ×Prm

a (v
p = true | f m

a )

where α is a normalization constant to ensure the probabilities sum up to 1.0 and wm
a ∈

[0.0,1.0] is a reliability weight indicating how good the classifier associates with the be-

havior a and the modality m is at recognizing attribute p. In other words, each behavior

acts as a classifier ensemble where each individual classifier’s output is combined using a

weighted combination. The weights are estimated by performing cross-validation of the

classifier specific to that modality and behavior.

At the end of the training stage, cross-validation at the behavior level is used to compute

the confusion matrix Θa
p ∈R2×2 for each pair of attribute p and behavior a. These confusion

matrices are normalized to compute the True Positive, True Negative, False Positive, and

False Negative rates for each behavior-attribute pair. Cross-validation is not a general step

for ACAC, but will later be used in MORC. Example confusion matrices are shown in

Figure 3.4. Next, we describe our MORC approach to address the problem of OFFLINE-

MEAL which is defined in Section 5.3.
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Figure 3.4: Example confusion matrices training from 36 objects (ROC36) showing the
TP, FP, TN, and FN rates for three of the attributes when using the robot’s shake behavior.
The behavior is good at recognizing HEAVY due to the rich haptic feedback produced when
shaking an object, somewhat good at recognizing BEANS (referring to the objects’ contents)
due to the sound produced by the contents, and poor at recognizing GREEN as no visual
input is processed when performing this behavior.

3.5 An Algorithm for OFFLINE-MEAL: MORC

In this section, we describe the theoretical framework of mixed observability robot con-

trol (MORC) for solving OFFLINE-MEAL problems. Behaviors such as look and drop, have

different costs and different accuracies in attribute recognition. At each step, the robot has

to decide whether more exploration behaviors are needed, and, if so, select the exploration

behavior that produces the most information. In order to sequence these behaviors toward

maximizing information gain, subject to the cost of each behavior (e.g., the time it takes to

execute it), it is necessary to further consider preconditions and non-deterministic outcomes

of the behaviors. For instance, shake and drop behaviors make sense only if a preceding

unreliable grasp behavior succeeds.

In this article, we assume action outcomes are fully observable and object attributes are

not. For instance, a robot can reliably sense if a grasp behavior is successful, but it cannot

reliably sense the color of a bottle or if that bottle is FULL. Due to this mixed observability
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and unreliable action outcomes, we use mixed observability MDPs (MOMDPs) [32] to

model the sequential decision-making problem for object exploration.

A MOMDP has mixed state variables. The fully observable state components are rep-

resented as a single state variable x (in our case, the robot-object status, e.g., the object is

in hand or not), while the partially observable components are represented as state variable

y (in our case, the object attributes, e.g., the object is HEAVY or not). As a result, (x,y)

specifies the complete system state, and the state space is factored as S = X ×Y , where

X is the space for fully observable variables and Y is the space for partially observable

variables.

Formally, a MOMDP model is specified as a tuple,

(X , Y , A , TX , TY , R, Z , O, γ),

where A is the action set, TX and TY are the transition functions for fully and partially

observable variables respectively, R is the reward function, Z is the observation set, O is

the observation function, and γ is the discount factor that specifies the planning horizon.

3.5.1 Action Transition System

TX : X ×A ×X → [0,1] is the state transition function in the fully observable com-

ponent of the current state. TX includes a set of conditional probabilities of transitions

from x ∈X —the fully observable component of the current state—to x′ ∈X , the com-

ponent of the next state, given a ∈A the current action. The transition diagram is shown

in Figure 3.5. Reporting actions and illegal exploration behaviors (e.g., drop an object in
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Figure 3.5: A simplified version of the transition diagram in space X for object explo-
ration. This figure only shows the probabilistic transitions led by exploration behaviors.
Report actions that deterministically lead transitions from xi ∈X to term (terminal state)
are not included.

state x1—before a successful grasp) lead state transitions to term (terminal state) with 1.0

probability.

Most exploration behaviors are unreliable and succeed probabilistically. For instance,

TX (x4,drop, x5) = 0.95 in our case, indicating there is a small probability the object is

stuck in the robot’s hand (detailed in Section 3.7.1). Such non-deterministic action out-

comes are considered in our experiments. The success rate of the behavior look is 1.0 in

our case since without changing positions of either the camera or the object it does not

make sense to keep running the same vision algorithms.

TY : Y ×A ×Y → [0,1] is the state transition function in the partially observable

component of the current state. It is an identity matrix in our case, (we assume) because

object attributes do not change during the process of the robot’s exploration behaviors.
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3.5.2 Observation Function

O : S×A ×Z → [0,1] is the observation function that specifies the probability of ob-

serving z∈Z when action a is executed in state s: O(s,a,z). In this article, the probabilities

are learned from performing cross-validation on the robot’s training data. As described in

Section 3.4, ACAC produces confusion matrix classifiers Θa
p ∈ R2×2 for each attribute p

and each action a.

O(s,a,z) = Pr(vz | vs,a) =
N p−1

∏
i=0

Θ
a
pi
(vpi

s ,vpi
z ) (3.8)

where Θa
p ∈ R2×2 is a confusion matrix for attribute p and action a; vs and vz are the true

and observed values of the attributes; vpi
s (or vpi

z ) is the true (or observed) value of the ith

attribute; and N p is the total number of attributes in the query. The robot might fail in

exploratory actions. In that case, the robot receives an empty observation, which causes no

belief change.

So far, we have specified all components of MORC. Next, we discuss a way of comput-

ing high-quality policies for OFFLINE-MEAL that include large numbers of attributes.

3.5.3 Dynamically-Learned Controllers

The OFFLINE-MEAL problem can include a prohibitively large number of attributes.

One of the datasets in our experiments contains 81 attributes, resulting in 281 possible states

in Y . It is computationally intractable to generate a far-sighted policy while considering

all the attributes. A strategy called iCORPP was introduced for dynamically constructing

minimal (PO)MDPs to model domain attributes for robot planning [88]. Behind iCORPP is
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Algorithm 1 MORC

Require: P; TX ; A e; Sol; R(s,a); D
1: Take queried attribute(s) p from human, where p⊆P
2: Generate X , Y , A r, TY and Z using p
3: Compute confusion matrix Θa

p using D where p∈p, a∈A
4: Generate O(s,a,z) with Θa

p for p ∈ p using Eqn. 3.8
5: Compute policy π using Sol for (X , Y , A , TX , TY , R, Z , O, γ)
6: Uniformly initialize belief b
7: while Current state s is not term do
8: Select action a with π based on b, and execute a
9: Make an observation z where z ∈Z

10: Update b with z and a using Bayesian rule
11: end while

a family of algorithms for Integrated commonsense Reasoning and probabilistic Planning

(IRP) [89]. Those algorithms aim to decomposing a sequential decision-making problem

into two tractable subproblems that focus on high-dimensional reasoning (e.g., objects with

many attributes) and long-horizon planning (e.g., tasks that require many actions). In line

with iCORPP, we model only those attributes necessary to the current query in MORC,

where the goal is to include a relatively small set of attributes in our MOMDPs while

maintaining the quality of the generated policies.

Algorithm 1 shows the complete process of MORC4. We dynamically construct MOMDP

controllers by specifying the following components in order: 1) State set Y that includes

only the attributes that are mentioned in the query (e.g., BLUE, HEAVY, and BOTTLE, given

that a user asks whether an object is a blue heavy bottle or not); 2) State set S, the Cartesian

product of X (predefined) and Y ; 3) Action set A r, where each reporting action ar ∈A r

corresponds to a state in Y ; 4) Action set A , union of A e (predefined) and A r; 5) Z h,

object attribute combinations; 6) Z , union of Z h and /0. The components together form

a complete MOMDP that is relatively very small, and typically includes fewer than 100

4Source code: https://github.com/keke-220/Predicate Learning
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states at runtime. Our approach enables automatic generation of complete MOMDP mod-

els, which can be encoded, as in our experiments, such that existing planning algorithms

(e.g., [90]) can be used to generate policies.

The implementation of the transition system of MORC is introduced in Section 3.5.1.

Figure 3.5 also presents how we manually specify transition diagrams for different datasets.

The observation function (detailed in Section 3.5.2) depends on classifiers produced by

ACAC. When learning those classifiers, MORC assumes that sufficient training data and

annotations are available for the robot. However, a large amount of object exploration

data is very expensive for robots to collect in the real world. Our solution is to interleave

ACAC and attribute identification where the robot interacts with the current object, collects

exploration data, and uses the data to improve attribute classifiers for future identifications.

This online process is referred to as ONLINE-MEAL, which will be discussed in the next

section.

3.6 An Algorithm for ONLINE-MEAL: MORC-ITRS

In this section, we describe MORC with information-theoretic reward shaping (MORC-

ITRS), which is a novel algorithm that is built on MORC but focuses on balancing explo-

ration and exploitation in ONLINE-MEAL problems. An overview of MORC-ITRS as applied

to ONLINE-MEAL is presented in Figure 3.6.

3.6.1 Information-Theoretic Reward

We first introduce the shaped information-theoretic reward function in MORC-ITRS.

In ONLINE-MEAL problems, the robot needs to optimize its actions toward not only im-
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proving the accuracy of attribute identification but also minimizing the cost of exploratory

behaviors. We introduce the two factors of perception quality and interaction experience

into the reward design of MOMDPs to achieve the trade-off between exploration (actively

collecting data for attribute learning) and exploitation (using the learned attributes for iden-

tification tasks).

Let Ent(s,a) be the entropy of the distribution over Z , given s and a, which is used for

indicating the perception quality of exploratory behavior a over the y component of s:

Ent(s,a) =− ∑
zi∈Z

O(s,a,zi) log2 O(s,a,zi) (3.9)

where zi is the ith observation and O(s,a,zi) is the probability of observing zi in state s after

taking action a. O(s,a,zi) is computed using the data instances gathered in the ONLINE-

MEAL process.

Let IE(p,a) be the interaction experience of applying action a to identify attribute p,

which is in the form of:

IE(p,a) =
1
δ
· | { f ∈ fa, labeled( f , p) = true} | (3.10)

where fa is a set of instances that a robot has collected so far, and labeled( f , p) returns

true if f has been labeled w.r.t. p, where the value vp is true or false. δ is a sufficiently

large integer to ensure IE(p,a) is in the range of [0,1). A lower value of IE(p,a) reflects a

higher need of further exploring (p,a).

Building on the concepts of perception quality and interaction experience, our information-
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Figure 3.6: An overview of the MORC-ITRS algorithm. A human user will choose an ob-
ject and ask a query such as “Is this object RED and SOFT?”. The robot will generate a
perception model on the specified attributes, i.e., RED and SOFT. Queried attributes and
the corresponding perception model then will be used to construct states and the obser-
vation function of the MOMDP model respectively. The reward function will be shaped
by the quality of the observation function and the robot’s experience. The robot uses the
generated MOMDP model to compute a policy π and interacts with the queried object.
Newly-perceived feature data will be used to update the robot’s experience and augment
the dataset. Humans will give feedback to the robot’s answer and attach labels to the fea-
ture data points.

theoretic reward function is defined as follows:

RIT (s,a) = R(s,a)+α ·Ent(s,a)−β · IE(p,a) (3.11)

where α and β are natural numbers and used for adjusting how much perception quality

and interaction experience are considered in reward shaping. Informally, when O(s,a,z)

is close to being uniform, the perception model of (s,a) is poor, and the value of Ent(s,a)

is high. As a result, our new reward function will encourage the robot to take action a by

offering extra reward α ·Ent(s,a). When the robot is experienced in applying a to identify

attribute p, IE(p,a) will be high. In this case, an extra penalty of β ·IE(p,a) will discourage

the robot from taking those well-explored behaviors. In comparison to standard MOMDPs,

where reward and observation functions are independently developed, MORC-ITRS enables
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Algorithm 2 MORC-ITRS

Require: P; TX ; A ; Sol; α; β ; R(s,a)
1: Initialize IE(p,a) = 0 for each action a ∈A and p ∈P
2: Initialize online training dataset D = /0
3: repeat
4: Take queried attribute(s) p from human, where p⊆P
5: Generate X , Y , TY , and Z using p
6: Compute confusion matrix Θa

p using D where p∈p, a∈A
7: Generate O(s,a,z) with Θa

p for p ∈ p using Eqn. 3.8
8: Compute Ent(s,a) using Eqn. 3.9
9: Generate RIT (s,a) with R(s,a) using Eqn. 3.11

10: Compute policy π using Sol for (X , Y , A , TX , TY , RIT , Z , O, γ)
11: Initialize action set A select and feature set F with /0
12: Uniformly initialize belief b
13: while Current state s is not term do
14: Select action a with π based on b, append a to A select , and execute a
15: Record data instances fa, and F ←F ∪{ fa}
16: Make an observation z where z ∈Z
17: Update b with z and a using Bayesian rule
18: end while
19: Ask human to provide v for p as label(s) for F
20: for each a in A select do
21: Update D using F and v
22: Update IE(p,a) for a ∈A and p ∈ p using Eqn. 3.10
23: end for
24: until end of interactions

the reward function to adapt to the changes of the observation function.

3.6.2 Algorithm Description

Algorithm 2 presents MORC-ITRS for active ONLINE-MEAL problems. The inputs of

MORC-ITRS include attribute set P , transition function TX , action set A e, MOMDP solver

Sol, parameters α and β , naive reward function R(s,a). MORC-ITRS does not have a ter-

mination condition.

MORC-ITRS starts with initializing the interaction experience function with zeros for all

(p,a) pairs, and then initializes dataset D that will be later augmented as the robot interacts

with objects (Lines 1 and 2). In each iteration of the main loop (Lines 3-24), MORC-ITRS
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takes an identification query from people (Line 4), constructs a MOMDP model (Lines 5-

10), computes its policy, uses the policy to interact with an object (Lines 13-18), and aug-

ments its dataset for improving the MOMDP model in the next iteration (Lines 20-23).

In the first inner loop (Lines 13-18), the robot interacts with an object based on the

generated policy. π suggests an action at each state b. The robot then executes the action

and makes an observation. Based on the action and observation, the robot updates its belief

using the Bayesian rule. After selecting each action, MORC-ITRS records this action along

with its collected feature data (Lines 14 and 15). In Line 19, we ask people to provide the

label y for the collected data. The final step is to iterate over all selected actions to augment

D , and calculate the new interaction experience (Lines 20-23).

Intuitively, we aim to encourage the robot to select exploratory behavior a ∈A e from

those behaviors, where the perception model of (s,a) is of poor quality, and there is rela-

tively limited experience of applying a to attribute p, i.e., the experience of (p,a) is limited.

3.7 Experiments

In this section, we present the experiment setup and experimental results from the evalu-

ation of our MORC and MORC-ITRS algorithms. MORC assumes the availability of training

data for learning action-conditioned attribute classifiers. Accordingly, the baselines for

evaluating MORC includes:

• Random: Actions are randomly selected from both reporting and legal exploration

actions. A trial is terminated by any of the reporting actions.

• Random Legal: Actions are randomly selected from legal exploration actions. Under
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an exploration budget, one selects the reporting action corresponding to y with the

highest belief. This baseline corresponds to the algorithm for MEAL problems of [37]

(we did not use their linguistic component).

• Predefined: An action sequence is strictly followed: ask, look, press, grasp, lift,

lower, and drop. Under an exploration budget or in early terminations caused by

illegal actions, the robot selects the reporting action that makes the best sense.

• Predefined Plus: The same as Predefined except that unsuccessful actions are re-

peated until achieving the desired result(s).

MORC-ITRS assumes no prior data, so the robot must learn perception models and perform

attribute identification at the same time. We compare MORC-ITRS with the baselines of:

• Iterative Random Legal: It is an iterative version of one of the baselines for solving

OFFLINE-MEAL problems. Just like Random Legal, the robot considers only the

“legal” behaviors (e.g., lift is legal only after a successful grasp behavior), and then

randomly selects one from the legal actions. The only difference is that the robot

collects more data after identifications, and uses the data for future tasks. With an

exploration budget for each trial (50 seconds and 80 seconds for one-attribute trials,

i.e., N p = 1, and two-attribute trials, i.e., N p = 2, respectively), the robot is forced to

report y ∈ Y of the highest belief.

• Iterative MORC: It iteratively runs MORC using all data collected so far. This pro-

cess is repeated after each batch. Iterative MORC enables ONLINE-MEAL actions by

passively collecting data and training attribute classifiers.
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3.7.1 Experiment Setup

Dataset Description: Three public datasets of ISPY32 [33], ROC36 [34], and CY101 [35]

are used in our experiments. CY101 (an updated version of the dataset [39]) contains many

more household objects and attributes.

In the ISPY32 dataset, a robot from the Building-Wide Intelligence project [27] ex-

plored 32 objects using 8 exploratory behaviors: look, grasp, lift, hold, lower, drop, push,

and press (Figure 3.3). The hold behavior was performed by holding the object in place.

The look behavior was performed by taking a visual snapshot of the object using the robot’s

sensors prior to exploration. Each behavior was performed 5 times on each object in the

dataset. Features of VGG, color, SURF, auditory, finger, and haptics were recorded in

ISPY32.

In ROC36, the robot explored 36 different objects using 11 prototypical exploratory

behaviors: look, grasp, lift, shake, shake-fast, lower, drop, push, poke, tap, and press 10

different times per object. The objects are lidded containers with the same shape and varied

along 3 different attributes: 1) color: RED, GREEN, BLUE; 2) weight: LIGHT, MEDIUM,

HEAVY; and 3) contents: BEANS, RICE, GLASS, SCREWS. These variations result in the

3×3×4 = 36 objects bearing combinations of these attributes in the set P that the robot

is tasked with learning.

For CY101 dataset, an uppertorso humanoid robot with 7-DOF arm explored 101 ob-

jects belonging to 20 different categories using 10 exploratory behaviors: look, grasp, lift,

hold, shake, drop, push, tap, poke, and press. Seven different types of features including

auditory, vibrotactile, finger, color, optical flow, SURF, and haptics (i.e., joint forces) were
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considered in CY101. Each behavior was performed 5 times per object.

Every individual classifier (introduced in Section 3.4) corresponds to an attribute-behavior

pair. The exact numbers of the classifiers needed by the robot depend on the datasets that

provide different numbers of attributes. For instance, in experiments using the ROC36

dataset, there were a total of 9×11 = 99 classifiers.

Action Costs and Action Failures: Each exploratory behavior a has a cost (planning and

execution) in the range of [0.5, 22.0] that came with the datasets, and is modeled in R(s,a).

For instance, the cost of behavior press (22.0) is much higher than the cost of behavior look

(0.5). The costs of behaviors in the three datasets are different because the datasets were

collected using different robots. Additionally, action ask has the cost of 100.0.5

In MORC, the reward of the reporting action was +500.0 (or -500.0) when the robot’s

attribute identification is correct (or incorrect). In MORC-ITRS, we set the reward to be

+300.0 (or -300.0). Most actions are considered unreliable to some degree in our MOMDP

model and we uniformly set the failure probability to 0.05 which we did not refine in

OFFLINE- or ONLINE-MEAL. For instance, an unsuccessful drop behavior models the sit-

uation that the object is stuck in the robot’s hand. We used an off-the-shelf system for

solving MOMDPs [90]. γ is a discount factor and γ = 0.99 in our case. This setting gives

the robot an unspecified, relatively long planning horizon.

We observed different behaviors of the robot given different success bonuses and failure

penalties. Intuitively, increasing the success bonus (positive reward) and the failure penalty

(negative reward) encourages the robot to spend more time exploring objects for higher

5Action ask was used only in the ISPY32 experiments, because other exploration behaviors are not as
effective as in ROC36 and CY101.
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success rates, i.e., being risk-averse. We also observed that a very large success bonus

frequently produced optimistic, risk-seeking behaviors, such as reporting before taking any

exploration behaviors. Such discussions point to the research area of reward engineering,

which is a long-standing challenge to researchers working on planning under uncertainty

and reinforcement learning. In this article, the success bonus and failure penalty values are

manually specified.

3.7.2 MORC Evaluation

Next, we describe the experiments we conducted to evaluate MORC. We aim to answer

the following questions:

• How does MORC perform in efficiency and accuracy? If MORC is more efficient and

more accurate than the baselines, then we can claim MORC’s superiority in achieving

the objective of solving OFFLINE-MEAL problems.

• Can we build a “super” model in MORC? A super model includes all potential at-

tributes into the sequential decision maker. In comparison, MORC dynamically con-

structs query-dependent MOMDPs.

The training process of MORC follows the principle of “leave one object out.” In other

words, an object was randomly selected, and all data instances corresponding to the par-

ticular object were excluded in training the classifiers. The excluded object was then used

for evaluating the classifiers’ performance. We iterated over all the objects in the experi-

ments for evaluating MORC in solving OFFLINE-MEAL problems. Specifically, for dataset

ISPY32 which includes 32 objects, each classifier was trained using 31× 5 = 155 data
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samples, where one object was excluded, and each behavior was repeated five times. For

dataset ROC36, there were 35×10 = 350 data instances used for training each classifier.

Illustrative Trial of MORC

We now describe an example in which a robot works on an OFFLINE-MEAL task. We

randomly selected an object from the ISPY32 dataset: a blue and red bottle full of water.

We then randomly selected attributes, in this case YELLOW and METALLIC, and asked the

robot to identify whether the object has each of the attributes or not. The selected object

was not part of the robot’s training set used to learn the attribute classifiers and the MOMDP

observation model. The robot should report negative to both attributes while minimizing

the overall cost of exploration behaviors.

Given this user query, the state space of MORC includes 25 states. We then generate an

action policy using past work’s methods [90]. Currently, building the model takes almost

no time, and we uniformly gave five seconds for policy generation using the model (same

in all experiments). The time for computing the policy is insignificant relative to the time

for exploratory behaviors (which is what we are really trying to minimize).

Figure 3.7 shows the belief change in this process. The initial distributions over X and

Y are [1.0,0.0, · · · ] and [0.25,0.25,0.25,0.25] respectively. The policy suggests to look

first. We queried the dataset to make an observation, neg-neg in this case. The belief over

Y is updated based on this observation: [0.41,0.28,0.19,0.13], where the entries represent

neg-neg, neg-pos, pos-neg, and pos-pos respectively. There is a (fully observable) state tran-

sition in X , from x0 to x1, so the belief over X becomes [0.0,1.0,0.0, · · · ]. Based on the

updated beliefs, the policy suggests taking the push behavior, which results in another neg-
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Figure 3.7: Action selection and belief change in the exploration of a red and blue bottle
full of water using MORC, given a query of “is this object YELLOW and METALLIC?”

neg observation. Accordingly, the belief over Y is updated to [0.60,0.13,0.22,0.05], which

indicates that the robot is more confident that the object is neither YELLOW nor METALLIC.

After behaviors of reinitialize, look, push, and push (this first push behavior was unsuccess-

ful, and produced the /0 observation), the belief over Y becomes [0.84,0.04,0.12,0.01].

The policy finally suggests reporting neg-neg, making it a successful trial with an overall

cost of 167 seconds, which results in an overall reward of 500− 167 = 333 (an incorrect

report would have resulted in −667 reward).

Remarks: It should be noted that the classifiers associated with each action and word will

produce an output even in cases where the sensory signals from that action are irrelevant

to the word. For instance, although the sensory signals relevant to push are haptics and

audio, the first push behavior results in an observation of YELLOW. It was “YELLOW:neg”,

because most objects in the prior training set are not yellow. The robot favors behaviors that

distinguish “easy” attributes (look distinguishes YELLOW well in this case). If a behavior

is useful, the robot will prefer taking it early. The more the behavior is delayed, the more
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the expected reward is discounted (we use a discount factor of 0.99 in our experiments).

Results of Applying MORC to OFFLINE-MEAL Problems

How does MORC perform in efficiency and accuracy on ROC36?

In each trial, we place an object that has three attributes (color, weight, and content)

on a table and then generate an object description that includes the values of two or three

attributes. This description matches the object in only half of the trials. When two (or

three) attributes are queried, Y includes four (or eight) states plus the term state, resulting

in S that includes 25 (or 49) states. The other components of MORC grow accordingly,

given an increasing number of queried attributes.

Experimental results are reported in Table 3.3. Not surprisingly, randomly selecting ac-

tions produces low accuracy. The overall cost is smaller in more challenging trials (all three

attributes are questioned), because in these trials there are relatively fewer exploratory be-

haviors (more attributes produce more reporting actions), making the agent more likely to

take a reporting action. MORC reduces the overall action cost while significantly improving

the reporting accuracy. Our performance improvement is achieved by repeating actions as

needed, selecting legal actions (e.g., lift is legal only if the current state is x2) that produce

the most information or have the potential of doing so in the future, and even arbitrar-

ily reporting without “wasting” exploratory behaviors given queries where the exploratory

behaviors are not effective.

How does MORC perform in efficiency and accuracy on ISPY32? In this set of ex-

periments, a user query is specified by randomly selecting one object and N p attributes

(1≤N p≤3), on which the robot is questioned. Each data point is an average of 200 trials,
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Table 3.3: Performances of MORC and two baseline planners in cost and accuracy on the
ROC36 dataset. Numbers in parentheses denote the Standard Deviations over 400 trials.

N p Method Overall cost (std) Accuracy

2
Random 17.56 (30.00) 0.245

Predefined Plus 37.10 (0.00) 0.583
MORC (Ours) 29.85 (12.87) 0.860

Random 10.12 (21.77) 0.130
3 Predefined Plus 37.10 (0.00) 0.373

MORC (Ours) 33.87 (8.78) 0.903
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Figure 3.8: Evaluations of five action strategies (including MORC) on the ISPY32 dataset.
Comparisons are made in three categories of overall reward (Left), overall exploration cost
(Middle), and success rate (Right).

where we conducted pairwise comparisons over the five strategies, i.e., the strategies were

evaluated using the same set of user queries. A trial is successful only if the robot reports

correctly on all attributes. It should be noted that most of the contexts are misleading in this

dataset due to the large number of object attributes, so more exploratory behaviors confuse

the robot if the behaviors are not carefully selected.

Figure 3.8 shows the experimental results. The overall reward is computed by subtract-

ing the overall action cost from the reward yielded by the reporting action (either a big

bonus or a big penalty). We do not compute standard deviations in this dataset, because the

diversity of the tasks results in problems of very different difficulties. We can see MORC
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Figure 3.9: A “super” MORC framework that models two relevant attributes, and an in-
creasing number of irrelevant attributes (x-axis). Our dynamically learned controllers cor-
respond to the left end of each curve, and model only the relevant attributes. The three
subfigures correspond to three different dimensions for evaluation: overall reward (Left),
overall exploration cost (Middle), and success rate (Right).

consistently performs the best in terms of the overall reward and overall accuracy. When

more attributes are queried, MORC enables the robot to take more exploratory behaviors

(Middle subfigure), whereas the baselines could not adjust their question-asking strategy

accordingly.

Can we build a “super” model in MORC? The last experiment aims to evaluate the

need for dynamically constructed controllers, answering the question “Can we build a ‘su-

per’ controller that models all attributes?” We constructed MOMDP controllers including

two relevant and an increasing number of irrelevant attributes (i.e., the ones that are not

queried). Our dynamically learned controllers include only the relevant attributes and cor-

respond to the curves’ left ends. Results are shown in Figure 3.9. We can see, the quality

of the generated action policies decreases soon, e.g., from >150 to <25 in reward, when

more irrelevant attributes are included in MORC. The right two subfigures show that MORC

first tries to achieve higher accuracy by taking more exploration behaviors and then “gives
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up” due to the growing number of irrelevant attributes. The results show the infeasibility

of “super” controllers in MORC that model all attributes and justify the need for dynamic

controllers.

3.7.3 MORC-ITRS Evaluation

Regarding the evaluation of MORC-ITRS for ONLINE-MEAL problems, we aim to an-

swer the following questions:

• How does MORC-ITRS perform in efficiency and accuracy?

• Does MORC-ITRS outperform baselines for individual attribute?

• How sensitive is MORC-ITRS to the parameters?

Attributes: In order to select attributes that are learnable given the robot’s exploratory

behaviors, evaluations of all attributes in the two datasets were performed prior to the ex-

periments. We set |P | to 10 and picked the attributes that have enough positive examples

for training and those are most learnable.

Queries: At the beginning of each trial, N p was either 1 or 2. At the end of each trial, the

robot is told if the identification was correct. In the case of N p = 1, the robot could learn

the attribute’s ground-truth value from the human’s feedback. In the case of N p = 2, the

robot could do so, only if the 2D identification was correct.

Batch-based Learning: In both datasets, we randomly split the objects into three sub-

sets of equal sizes. The subsets are used for pretraining (Ob jpre), training (Ob jtrain), and

testing (Ob jtest) respectively. In the pretraining phase, the robot started with a handcrafted

policy where each action is forced to be applied on the queried object once. We collected
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feature instances with labels from those interactions and built a pretraining dataset D pre

that represents the robot’s prior knowledge.

In principle, we do not need a pretraining dataset in MORC-ITRS. In practice, however,

without a small amount of data for “warm up,” the robot might take a large number of

interactions with objects for exploration in order to identify object attributes and learn

meaningful observation models. This number is particularly large at the early learning

phase. A practical challenge is that the datasets used in this article can provide only a

limited number of samples for each attribute-behavior pair. As a result, we would have to

reuse the same samples from the dataset when the robot performs the same actions more

than N times (N = 5 in our case), which is detrimental to the quality of the experiments. To

alleviate this practical issue, we provide a small amount of data for pretraining, though the

ONLINE-MEAL algorithm does not require that.

Illustrative Trials of MORC-ITRS

Table 3.4: Early and late observation models for behavior press

Early phase Late phase

Not soft Soft Not soft Soft
(Observed) (Observed) (Observed) (Observed)

Not soft (Ground truth) 0.68 0.32 0.82 0.17
Soft (Ground truth) 0.50 0.50 0.20 0.80

From the robot’s many trials of the learning experience, we selected two trials (T1 and

T2), where the robot faced the same object (a Coke can that has attributes METAL, EMPTY,

and CONTAINER) and needed to answer the same question “Is this object SOFT?” From

the dataset, we know that the correct answer should be “no” (the robot did not know it).

T1 appeared at the second batch of training, and T2 appeared at the ninth. We present both
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trials and explain how the robot performed better in T2.

In T1 (early learning phase), the robot first performed the look behavior. Then, the

robot had the following options: grasp, tap, push, poke and press according to Figure 3.5.

Specifically, for press, the confusion matrix Θ
press
SOFT (shown in Table 3.4) was nearly uni-

form, which is typical in the early learning phase. Among those “less useful” behaviors,

the robot chose grasp. The distribution over Y was changed from [0.37, 0.63] to [0.46,

0.54], where the entries represent “not soft” and “soft” respectively. After press, MORC-

ITRS sequentially suggested grasp, lift, hold and hold. Finally, the robot reported pos that

resulted in a failed trial with a total cost of 55.5 seconds.

In T2 (late learning phase), behavior press became more useful for identifying attribute

SOFT compared to T1, as shown in Table 3.4. For grasp, IE(SOFT,grasp) = 0.67 and Θ
grasp
SOFT

was [0.66, 0,33, 0.61, 0.38] (TN, FN, FP, TP), which meant that the robot was experienced

with behavior grasp and considered grasp was not as useful as press. Accordingly, MORC-

ITRS suggested press instead of grasp after taking look. The belief over Y changed from

[0.57, 0.43] to [0.67, 0.33]. After only look and press, the robot was able to quickly report

neg, resulting in a successful trial with a total cost of 22.5 seconds.

From the above two trials (same query and object in different learning phases), we see

how the improved perception model of (press, SOFT) helped the robot correctly identify

SOFT with a low cost.

Results of Applying MORC-ITRS to ONLINE-MEAL Problems

How does MORC-ITRS perform in efficiency and accuracy? Figure 3.10 shows the

learning curve for one-attribute and two-attribute identification queries evaluated on the
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three datasets, where we conducted experiments over three different strategies (two base-

lines and MORC-ITRS). x-axis is the accumulative cost of all trials at the training phase.

Since the cost is determined by the time required to complete each action, we can regard

the x-axis as training time. y-axis reflects the identification accuracy at the testing phase.

The proposed method consistently performs better in task completion rate along the whole

training process and achieves higher accuracy than baselines.
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                   Iterative MORC

                   Iterative Random Legal

(a) One-attribute queries on ISPY32.

                   MORC-ITRS 

                   Iterative MORC

                   Iterative Random Legal

(b) Two-attribute queries on ISPY32.

                   MORC-ITRS 

                   Iterative MORC

                   Iterative Random Legal

(c) One-attribute queries on ROC36.

                   MORC-ITRS 

                   Iterative MORC

                   Iterative Random Legal

(d) Two-attribute queries on ROC36.

                   MORC-ITRS 

                   Iterative MORC

                   Iterative Random Legal

(e) One-attribute queries on CY101.

                   MORC-ITRS 

                   Iterative MORC

                   Iterative Random Legal

(f) Two-attribute queries on CY101.

Figure 3.10: Time length of conducting exploratory actions in hours, and identification
accuracy of ONLINE-MEAL tasks, where we compared MORC-ITRS (ours) to two baseline
strategies including Iterative Random Legal, and Iterative MORC.
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Although we provided the same pretraining data, three curves in the two subfigures (for

each of the three datasets) do not start from the same point. That is because pretraining

data only affects the observation model for the robot, but it is not directly related to the

policy for attribute identification. Three strategies have the same observation model but

they use different methods to select exploratory behaviors. As a result, the task-completion

accuracy is not the same for them at the starting point. MORC-ITRS assigns extra rewards

for exploration at the very beginning of the training phase. It resulted in not only a bigger

cost but also a higher accuracy.

Does MORC-ITRS outperform baselines for individual attribute? At an exploration

cost budget of 2 hours, we further evaluated the performance of each individual attribute

on CY101 using the three strategies we mentioned, as shown in Figure 3.11, where 10

attributes are ranked by the identification accuracy of our method, i.e. MORC-ITRS. The

robot has a higher identification accuracy for most of the attributes using MORC-ITRS,

while the Iterative Random Legal baseline produces a relatively weak result compared to

the other two strategies. Attributes such as PLASTIC, HARD, and EMPTY are more difficult

to learn since the accuracy is no more than 80% for all three methods. And attributes such

as BLUE, FULL and CONTAINER are easier, where Iterative MORC and MORC-ITRS both

offer pretty good results.

How sensitive is MORC-ITRS to the α and β parameters? In Eqn. 3.11, we have two

parameters α and β . We conducted experiments on CY101 with different α and β combi-

nations, as shown in Figure 3.12. One observation is that the selections of α and β affect

the performance of MORC-ITRS. A small α value leads to a higher identification accuracy
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               Iterative Random Legal

               Iterative MORC

               MORC-ITRS 

Figure 3.11: Accuracy of attribute identification tasks. The attributes (x-axis) are ranked
based on MORC-ITRS’ performance. MORC-ITRS performed the best on seven out of the
ten attributes.

(a) Early (b) Middle (c) Late

Figure 3.12: We empirically evaluated the identification accuracies of MORC-ITRS in early
(a), middle (b), and late (c) learning phase using different values of α and β , which are two
parameters of our reward shaping approach (Eqn. 3.11).

in the beginning, but the accuracy does not improve much when it reaches the middle or

late learning phase. A lower β value encourages the robot to explore no matter whether it is

experienced or not, while a higher β value affects the robot to compute the optimal policy.

Thus, when β is within the middle range, the robot has the best identification performance.

We leave the auto-learning of the parameters to future work. Another observation is that the

overall accuracy becomes higher in the middle (Middle) and late (Right) learning phases

than early (Left) learning phase, which is expected and verifies the robustness of MORC-
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ITRS to α and β selections.

3.7.4 Real Robot Demonstration of MORC-ITRS

Table 3.5: Behaviors, observations, and belief updates in the demonstration trial of MORC-
ITRS.

Step Behavior Observation
Belief

(Initial belief: [0.5, 0.5])

1 look pos [0.41, 0.59]
2 grasp pos [0.33, 0.67]
3 lift pos [0.20, 0.80]
4 shake neg [0.83, 0.17]
5 shake pos [0.46, 0.54]
6 shake neg [0.94, 0.06]

We have demonstrated the learned action policy using a real robot (UR5e arm from

Universal Robots). It should be noted that the three datasets we used in this research were

collected on robots that are different from the robot in the demonstration. It is a major

challenge in robotics of transferring skills learned from one robot to another. To alleviate

the effect caused by the heterogeneity of robot platforms, after performing each action, we

sampled a data instance from CY101 according to x ∈X , the fully observable component

of the current state.

In the demonstration trial, our robot was given an object – a pill bottle half-full of beans.

The one-attribute query was “Is this object EMPTY?” The robot performed a sequence of

exploratory behaviors, as shown in Table 3.5, where we also listed the observation and the

belief after each behavior. For instance, a pos observation means that the robot perceives

that the object is EMPTY. Figure 5.6 shows a sequence of screenshots of the UR5e robot

completing the task using a learned action policy.

Note that at step 3 in the demonstrated trial, lift
¯

was not very useful for identifying

whether the object was empty or not. That was because the training set contained objects
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(a) look (b) grasp (c) lift

(d) shake (e) shake (f) shake

Figure 3.13: A demonstration of the learned action policy. The robot performed six actions
in a row. In the beginning, the robot started with a uniform distribution (it evenly believed
the object can be EMPTY or not). After completing the six actions, the belief converged to
“negative” (0.94 probability). Finally, the robot selected a reporting action to report that
the object is not EMPTY.”

that were of various weights causing a single lift action that could not distinguish between

attributes such as EMPTY and LIGHT-WEIGHTED. In contrast, the shake actions produced

a distinctive sound that seemed to be beneficial for leading the robot to a correct identifica-

tion.

There were drastic changes in the belief after the two shake actions in Steps 5 and 6 in

Table 3.5. At step 5, shake was executed successfully and led the system to the next state.

However, there was uncertainty in the perceived sensory data which caused inaccurate

outputs from the classifier and undesired belief changes from the robot. Intuitively, how the
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belief evolves over time depends on how the robot trusts its actions on different attributes.

When the robot believes an action is useful for detecting an attribute, this action might

cause a drastic change in its belief; otherwise, the beliefs before and after the action might

look similar. In this example, the robot believed shake is useful for detecting EMPTY, so

the belief updates were significant after each of the three consecutive shake behaviors.

3.8 Conclusion

In this chapter, we introduce two Multimodal Embodied Attribute Learning (MEAL)

problems that both require a robot to compute a policy of leveraging multimodal ex-

ploratory behaviors to identify object attributes. In OFFLINE-MEAL problems, the robot is

provided data for learning action-conditioned attribute classifiers, whereas the robot does

not have such data in ONLINE-MEAL domains. Accordingly, we have developed two al-

gorithms called mixed observability robot control (MORC) and MORC with information-

theoretic reward shaping (MORC-ITRS) for addressing OFFLINE- and ONLINE-MEAL prob-

lems respectively.

MORC uses mixed observability Markov decision processes (MOMDPs) to solve OFFLINE-

MEAL problems, where a robot selects actions for multimodal perception in object explo-

ration tasks. Our approach can dynamically construct a MOMDP model given an object

description from a human user, compute a high-quality policy for this model, and use the

policy to guide robot behaviors (such as look and shake) toward maximizing information

gain. The dynamically built models in MORC enable the robot to focus on a minimum set

of domain variables that are relevant to the current object and query. Attribute classifiers

in MORC are learned using existing datasets collected with robots interacting with objects
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in the real world. Experimental results show that MORC enables the robot to identify ob-

ject attributes more accurately without introducing extra cost from exploratory behaviors

compared to a baseline that suggests actions following a predefined action sequence.

MORC-ITRS selects exploratory behaviors toward simultaneous attribute classification

and attribute identification. This algorithm is built on MORC, and provoides an information-

theoretic reward function for the exploration-exploitation trade off in ONLINE-MEAL prob-

lems. The proposed method and baseline methods are evaluated using three real-world

datasets. Experimental results show that MORC-ITRS enables the robot to complete at-

tribute identification tasks at a higher accuracy using the same amount of training time

compared to baselines.
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4 Grounded Robot Task and Motion Planning

4.1 Introduction

Task and motion planning (TAMP) algorithms and systems have been used for robot

planning at both discrete and continuous levels [91, 1]. Task planners sequence symbolic

actions for guiding the robot’s high-level behaviors [92], and motion planners calculate

low-level motion trajectories in continuous spaces [93]. TAMP algorithms aim to bridge

the gap between task planning and motion planning towards enabling robots to fulfill task-

level goals and maintain motion-level feasibility at the same time [94, 95, 96, 97, 98, 99,

100, 101, 102].

One way to categorize TAMP domains is based on if a problem domain requires robot

actions that take relatively short time (e.g., seconds, such as picking up and putting down

objects) or relatively long time (e.g., minutes or even hours as navigating from one location

to another) [103]. In the former type of domains, action feasibility is much more important

to consider than plan efficiency, since extra plan steps do not add much time to the expected

execution time. On the other hand, this paper is motivated by the latter type of TAMP

domains, wherein it is advantageous to incorporate both efficiency and feasibility into the

evaluation of plan qualities. Some existing TAMP research incorporates both efficiency and

feasibility into task-motion planning [103, 98]. However, those methods evaluate feasibility
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Figure 4.1: Our mobile manipulation domain that includes a long banquet table surrounded
by chairs. Given a target location (on the table) to place an object, the robot needs to
navigate to a location from which it can successfully perform the manipulation action,
ideally as quickly as possible (thus preferring the near side of the table when feasible).

in a deterministic way, and rely on predefined “state mapping functions” for mapping each

symbolic state into feasible poses in continuous space. For instance, to unload an object

to a table, a robot needs to move to the table first, i.e., beside(table)=true, where

previous TAMP research that we are aware of relies on predefined feasible poses that are

spatially close to the table to evaluate the truthfulness of the “beside table” statement.

Such predefined state mapping functions that assume deterministic action feasibility

have at least two deficiencies. First, a predefined state mapping function is not robust

to dynamic obstacles (e.g., people seated around the table). Second, not all “feasible”

behaviors are equally preferred, e.g., standing far and stretching out to place an object may

be less preferred than standing close to do so. Those observations motivate this work that

learns to evaluate action feasibility for robot task-motion planning.

The main contribution of this work is a visually grounded TAMP algorithm, called

Grounded RObot Task and Motion Planning (GROP), that probabilistically evaluates ac-

tion feasibility, and incorporates both feasibility and efficiency towards maximizing long-
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Figure 4.2: An overview of this work, including an FCN-based feasibility evaluation ap-
proach, and GROP, our grounded TAMP algorithm. A task corresponds to one “unloading
goal” on the table, as well as a configuration of obstacles (chairs in our case). Given a
task, every pixel is considered a navigation goal – the robot attempts to navigate there, and
unload an object from there. This navigation-manipulation process is referred to as a trial.
The robot performs multiple trials for each navigation goal, which yields a feasibility value
for that particular location. The feasibility values together form one heatmap for each task.
In our dataset, each instance is a top-down view image, whose label is the corresponding
heatmap. The “Dataset” box shows a few “combined heatmaps” where heatmaps are over-
laid onto the corresponding images. Training with the dataset generates an FCN that is
used for two purposes: 1) evaluating the feasibility of task-level actions, and 2) selecting
motion-level navigation goals. Finally, GROP incorporates both efficiency (measured by
action costs) and feasibility to compute task-motion plans for a mobile manipulator.

term utility. Inspired by the concept of “symbol grounding” [6], we use “visual grounding”

to refer to methods that use computer vision techniques to help an agent interpret abstract

symbol tokens and connect them to the real world.

We have applied GROP to a domain of a mobile manipulator setting “dinner tables,” as

illustrated in Fig. 4.1. The robot needs to decide how to approach a table at the task level

(e.g., from which side of the table), compute 2D navigation goals (connecting task and mo-

tion levels), and plan motion trajectories for navigation and manipulation behaviors. We

have collected a dataset that includes 96,000 instances of a robot conducting mobile ma-

nipulation tasks where in each instance, a robot unloads an object with dynamic obstacles

surrounding a table. An instance is labeled “successful” if the robot is able to compute and
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execute a task-motion plan that includes both navigation and manipulation actions. We use

fully convolutional networks (FCNs) [12] to learn to visually ground spatial relationships

and evaluate action feasibility. GROP is summarized in Fig. 4.2.

Compared with baselines from the literature [103, 104], GROP performed better in

success rate while maintaining lower (or comparable) cumulative action costs. Finally, we

demonstrate GROP with real-world robot hardware.

4.2 Related Work

TAMP methods aim to compute plans that fulfill task-level goals while maintaining

motion-level feasibility, as reviewed in recent articles [91, 1]. Several TAMP algorithms

have been introduced in recent years (e.g., [105, 106, 107, 108, 109, 110, 96, 111, 112,

113, 17, 95, 114, 115]. Within the TAMP context, we distinguish a few subareas of TAMP

that are closest to this research on learning to visually ground symbolic spatial relationships

towards planning efficient and feasible task-motion behaviors under uncertainty.

4.2.1 TAMP for Efficient and Feasible Behaviors

When high-level actions only take a few seconds, TAMP algorithms can focus mostly

on action feasibility constraints without fully optimizing high-level plan efficiency. How-

ever, when there are actions that take significant time to execute (e.g., long-distance naviga-

tion), task-completion efficiency cannot be overlooked. Some recent methods have consid-

ered efficiency in different aspects of TAMP, such as planning task-level optimal behaviors

in navigation domains [103], integrating reinforcement learning with symbolic planning in

dynamic environments [97], computing safe and efficient plans for urban driving [16], and
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optimizing robot navigation actions under the uncertainty from motion and sensing [98]. In

contrast to those methods that do not have a perception component, GROP visually grounds

symbols (about spatial relationships) to probabilistically evaluate action feasibility for task-

motion planning.

4.2.2 TAMP under Uncertainty

While most TAMP methods assume a fully observable and deterministic world [1],

some have been developed to account for the uncertainty from perception and action out-

comes [11, 116, 117, 118, 119, 120]. For instance, the work of Kaelbling and Lozano-Pérez

extended the “hierarchical planning in the now” approach to address both current-state un-

certainty and future-state uncertainty [11]. Going beyond those methods that aim to main-

tain plan feasibility to complete tasks under high-level uncertainty, we consider uncertainty

in the robot motion and also incorporate task-completion efficiency into the optimization

of robot behaviors. As a result, our GROP algorithm is particularly suitable for TAMP

domains that require robot operations over extended periods of time, such as long-distance

navigation.

4.2.3 TAMP with Visual Perception

Recently developed methods have shown that visual information can be used to help

robots predict plan feasibility, including task-level feasibility [121, 95], and motion-level

feasibility [104, 99]. Those methods were developed to maximize task completion rate

in manipulation domains, and actions that take relatively long time (such as long-distance

navigation) were not included in their evaluations. Focusing on robots that operate over
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extended periods of time, GROP (ours) incorporates efficiency into plan optimization. For

instance, when highly feasible plans have very high costs, GROP supports the flexibility of

executing slightly less feasible plans with much lower costs. GROP achieves this desirable

trade-off between feasibility and efficiency by probabilistically evaluating plan feasibility,

which is not supported by the above-mentioned methods.

4.3 Problem Statement

We consider a mobile manipulation domain that includes N objects Obj. There are

obstacles (tables and chairs in our case) that prevent the robot from navigating to some

positions in the domain. Location l is a symbolic concept that corresponds to a set of

obstacle-free 2D poses (X), where each pose (x ∈ X) specifies a 2D position and an ori-

entation. The robot needs to move each object o ∈ Obj from its initial location to a goal

position.

Actions: The robot is equipped with skills of performing a set of symbolic (task-level)

actions denoted as A : An ∪Am, where An and Am are navigation actions and manipula-

tion actions respectively. A navigation action an
l,l′ ∈ An is specified by its initial and goal

locations, l, l′ ∈ L, where L includes a set of symbolic locations. A manipulation action,

am
o,l ∈ Am, is specified by an object to be manipulated, o ∈ Obj, and a symbolic location,

l ∈ L, to which the robot navigates and performs the manipulation action. We consider

two types of manipulation actions of loading and unloading, represented by am+ and am−

respectively. Actions are defined via preconditions and effects. For instance, the action

load(o1) has preconditions of at(robot,l1) and at(o1,l1), meaning that to load

the object o1, the object must be co-located with the robot at the location l1. The effects of

71



load(o1) include o1 being moved into the robot’s hand, i.e., inhand(o1).

Perception: The robot visually perceives the environment through top-down views over

the areas where manipulation and navigation actions are performed. We use IM to represent

a 2D image that captures the current obstacle configuration, as shown in the “Image Input”

of Fig. 4.2 (bottom right). To facilitate robot learning, we provide a dataset (as illustrated in

the “Dataset” box of Fig. 4.2). Each instance includes a top-down view image, and a target

object with a predefined position, while each label is in the form of a heatmap. Each pixel

of a heatmap is associated with a 2D position, and has a “feasibility” value that represents

the success rate of the robot navigating to the 2D position, and manipulating the target

object from there.

A map is generated in a pre-processing step, and provided to the robot as prior infor-

mation for navigation purposes using rangefinder sensors.

Uncertainty: The outcome of performing navigation action an
l,l′ to goal pose x is deter-

ministic at the task level, but is non-deterministic at the motion level. In other words, the

robot will end up in position x′, which is not necessarily the same as x. This setting captures

the fact that a mobile robot never achieves its exact 2D navigation goal (due to its imper-

fect localization and actuation capabilities), though successfully navigating to an area (l) is

generally possible.

We focus on the interdependency between navigation and manipulation actions. For in-

stance, the execution-time uncertainty from navigation actions results in different standing

positions of the robot, which makes the outcomes of manipulation actions non-deterministic.

This challenge generally exists in mobile manipulators. We assume no noise in the execu-

tion of manipulation actions (loading and unloading) to objects within a reachable area.
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Format of Solution: A solution is in the form of a task-motion plan p = ⟨pt , pm⟩, where

task plan pt is of the form ⟨an
0,a

m
0 ,a

n
1,a

m
1 , ...⟩, indicating that navigation and manipulation

actions are interleaved. Motion plan pm is of the form ⟨ξ n
0 ,ξ

m
0 ,ξ n

1 ,ξ
m
1 , ...⟩, and ξ n

i (or ξ m
i ) is

a trajectory in continuous space for implementing symbolic action an
i (or am

i ). The quality

of task-motion plan p is evaluated using a utility function U (p), which considers both

feasibility and efficiency of plan p:

U (p) = R ·F (p)−C (p), (4.1)

where F (p) ∈ [0,1] is the plan feasibility (i.e., the probability that p can be successfully

executed), C (p) is the overall plan cost of executing p, and R→R is a success bonus

reflecting the reward from a successful execution. An optimal algorithm reports a task-

motion plan of the highest utility:

p∗ = argmax
p

U (p)

Remark: GROP agents are developed under the following assumptions that are aligned

with the problem definitions presented in this section:

• the robot state space is predefined.

• actions and action realizations are unknown. Navigation behaviors are particular

unreliable due to dynamic obstacles in cluttered environments.

• top-down views are available as part of the observation, so as lidar scan and a pre-

built map (not including dynamic obstacles).
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• the goal is to maximize success rate and minimize the total action cost of the current

task.

Next, we present an algorithm that computes such task-motion plans through visually

grounding spatial relationships while considering both efficiency and feasibility.

4.4 The GROP Algorithm

In this section, we introduce the paper’s main contribution, an algorithm called Grounded

RObot Task and Motion Planning, or GROP for short.

4.4.1 Algorithm Description

Algorithm 3 presents the GROP algorithm. Implementing GROP requires a task planner

Plnrt , a motion planner Plnrm, a success bonus R→R, and a cost function Cst that evaluates

the cost of any motion trajectory generated by Plnrm. Inputs of GROP include a rule-based

task description T , a robot initial 2D position xinit, and a provided dataset D. GROP outputs

a task-motion plan p in the form of ⟨pt , pm⟩.

GROP starts with training an FCN-based feasibility evaluator Ψ using provided dataset

D in Line 2. Then it initializes an empty set of task-motion plans P in Line 3. Plnrt takes T

as input and outputs a set of task-level satisficing plans, denoted as Pt in Line 4. The outer

for-loop (Lines 5-22) iterates over each task-level satisficing plan. In each iteration, GROP

evaluates the utility value of one task plan U (p), which incorporates both plan feasibility

F (p) and plan efficiency C (p). Aiming to evaluate F (p) and C (p), each iteration in the

first inner for-loop (Lines 8-14) considers a pair of navigation and manipulation actions in

the task plan, and evaluates its feasibility and cost. In the second inner for-loop of Lines 15-
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Algorithm 3 GROP
Require: Task planner Plnrt , motion planner Plnrm, success bonus R, and cost function Cst

1:Input: Task description T , robot initial position xinit, dataset D
2: Train a motion-level feasibility evaluator Ψ using dataset D (detailed in Section 4.4.2)
3: Initialize a set of task-motion plans P← /0
4: Compute a set of task-level satisficing plans: Pt ← Plnrt(T )
5: for each plan pt ∈ Pt do
6: Initialize a motion-level position sequence: X seq← [xinit]
7: Initialize tmp f ← 0 and tmpc← 0
8: for each action pair ⟨an

l,l′ ,a
m
o,l′⟩ in pt do

9: Capture IM of location l′

10: Predict heatmap h = Ψ(IM), using Eqn. 4.3
11: tmp f ← tmp f +Feat(an

l,l′ ,a
m
o,l′), using Eqn. 4.4

12: x′← Smp(l′,h), and append x′ to X seq

13: tmpc←tmpc +Cst
(
Plnrm(an

l,l′)
)
+Cst

(
Plnrm(am

o,l′)
)

14: end for
15: for each (xi,xi+1) ∈ X seq do
16: Compute motion-level trajectory ξ ← Pm(xi,xi+1)
17: Append ξ to motion plan pm

18: end for
19: Generate task-motion plan p← ⟨pt , pm⟩, and append p to the task-motion plan set P
20: Update F (p)← tmp f and C (p)← tmpc

21: U (p)←R ·F (p)−C (p) (Eqn. 4.1)
22: end for
23: Compute optimal task-motion plan: p∗ = argmaxp∈P U (p)

return p∗

18, GROP calls Plnrm to compute one motion plan for each task-level action. Line 19 puts

together task plan pt and motion plan pm to form a task-motion plan p. In the same line, p

is added to task-motion plan set P. Lines 23-23 are the final steps to select and return the

optimal task-motion plan from P given utility function U (p).

4.4.2 Feasibility Evaluation

In this subsection, we discuss how to evaluate action feasibility at task and motion

levels (Line 11 in Algorithm 3), where the feasibility evaluation at the task level relies on

the feasibility evaluation at the motion level.

Motion-Level Feasibility: In our mobile manipulation domain, motion-level feasibility
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Feam(x,y) is a function of 2D positions x and y, and is the probability of a robot successfully

navigating to x and manipulating an object that is in position y. Feam(x,y) can be extracted

from gray-scale heatmap image hy that is centered around y:

Feam(x,y) = hy[x] (4.2)

We use a FCN-based feasibility evaluator Ψ to generate heatmap hy, given a top-down

view image IMy captured right above unloading position y (“Image Input” in Fig. 4.2):

hy = Ψ(IMy) (4.3)

Data Collection and Learning Ψ with FCN: Here we discuss how to learn Ψ in Equa-

tion 4.3. A task specifies an obstacle configuration and a position y that a robot wants to

unload objects to. In each trial of our data collection process, a robot attempts to navigate

to position x, and then unload an object to position y. Such a trial produces a data point in

the following format:

(IMy,x) : r

where IMy is a top-down view image captured right above y, and r is either true or false

depending on if the robot succeeds in both navigation and manipulation actions. The

robot repeated the same process for N times (N = 5 in our case), and we used the re-

sults (r0,r1, · · · ,rN−1) to compute a success rate for positions x and y, which determines a

gray-scale color for one pixel of a heatmap: h[x].

Iterating over all possible positions of x in an area of Width×Height (24 pixels by 8
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pixels in our case) in image IM, we were able to generate one full heatmap h for the current

task. Here we assume this area is large enough to cover all positions, from which the robot

can unload objects to y. To diversify the instances, we randomly placed obstacles (chairs in

our case) to generate ten different “environments,” and then randomly sampled unloading

positions to generate a total of 100 tasks. As a result, our dataset contains 100 instances,

each in the form of a top-down view image (64× 32). Each instance has a label that is in

the form of a heatmap. The size of our dataset is 96,000, i.e., 100×N×Width×Height.

Task-Level Feasibility: Feat(an
l,l′,a

m
o,l′) evaluates the feasibility (in the form of a probabil-

ity) of a robot successfully performing both task-level navigation action an
l,l′ and task-level

manipulation action am
o,l′ .

Feat(an
l,l′,a

m
o,l′) =

∑
i=0···N−1

Feam(Smpi(l
′,h),y

)
N

(4.4)

where function Smpi(l
′,h) samples the ith 2D position from location l′. The positions are

weighted by heatmap h that is centered around object o. Intuitively, positions of higher

motion-level feasibility are more likely to be sampled.

4.5 Experiments

We conducted extensive experiments in simulation, where a mobile manipulator per-

forms navigation and manipulation actions to set “dinner table.” We also demonstrate

GROP using a real robot system that includes a mobile platform and a robot arm. Our

main hypothesis is that GROP outperforms existing TAMP algorithms in task completion

rate without introducing additional action costs.
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Figure 4.3: Overall performances of GROP and four baseline methods in efficiency (x-
axis) and task completion rate (y-axis). Tasks are grouped based on their difficulties. The
ellipses represent the means and 2D standard variances of each approach. GROP produced
the highest task completion rate, while maintaining smaller or comparable execution time.
This observation is consistent over tasks of different difficulties.

Baselines: GROP is evaluated through comparisons with the following baselines. All

baselines are TAMP algorithms, and they vary in whether efficiency is considered in plan

optimization, and whether feasibility is considered. All baselines select navigation goals

by randomly sampling an obstacle-free position that is close to the unloading position.

• Satisficing (weakest baseline): Action costs are not considered, so it does not avoid

long-distance navigation. All actions share the same feasibility (FCN not used).

• PETLON [103]: It considers plan efficiency, but does not quantitatively evaluate

action feasibility.

• DVH [104]: It does not consider plan efficiency, but quantitatively evaluates action

feasibility.

• FCN-Planning (most competitive): The same as GROP except that the heatmap

(Line 12 in Algorithm 3) is not used for selecting 2D navigation goals.

It should be noted that, we cannot authentically implement DVH [104] for evaluation,

because they used convolutional neural networks (CNNs) for task-level action feasibility
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evaluation, and we do not have a dataset from our domain for training the CNNs. We did

the best we could by replacing their CNN-based visual component with our FCN-based

feasibility evaluator.

Experiment Setup: The mobile manipulator includes a UR5e robot arm, a Robotiq 2F-

140 gripper, an RMP 110 mobile base, and a Velodyne VLP-16 lidar sensor. We used

the Building-Wide Intelligence (BWI) codebase [27] to construct our simulation platform,

which relies on the Gazebo physics engine [29]. We use a Rapidly exploring Random Tree

(RRT) approach [24] to compute motion-level manipulation plans. The navigation stack

was built using the move base package of Robot Operating System (ROS) [26]. The

robot’s task planner is ASP-based [22, 23] and we used the Clingo solver for computing

task plans [122].

The dataset described in Section 4.4.2 was fed into an FCN for training Ψ. We adapted

the FCN-VGG16 model [12] and trained it with batch size 4 and learning rate e−3. We

used a machine equipped with an Intel 3.80GHz i7-10700k CPU and a GeForce RTX 3070

GPU on a Ubuntu system.

The test environment contains two tables, one for loading and the other (a long banquet

table) for unloading. Obstacles (chairs) are randomly placed near the unloading table.

Positions and the number of chairs are dynamically changed for different environments.

An RGB camera is attached to the ceiling to capture overhead images of environments.

A mobile manipulator is tasked with moving three objects from the loading table to three

different positions on the unloading table, where the robot can hold multiple objects at the

same time. There is a tolerance of 0.1m for unloading actions, and an unloading action

is considered unsuccessful if the object is more than this distance away from the specified
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Table 4.1: Task completion rate / average execution time in one of the environments with
different robot’s navigation velocities.

GROP PETLON DVH

Slow 0.80 / 166.16 0.63 / 166.46 0.73 / 204.04
Medium 0.82 / 95.42 0.63 / 93.23 0.73 / 112.02
Fast 0.88 / 59.56 0.63 / 56.62 0.73 / 66.01

unloading position. Task completion is evaluated based on whether each “seat” of the table

is set up. Reward R has a value of 40 in our utility function defined in Equation 4.1.

GROP vs. Baselines: Fig. 4.3 shows the main results from experiments of comparing

GROP to the four baselines. There were a total of 420 different tasks in 30 different envi-

ronments. Each data point in the figure represents an average of 10 tasks. We grouped the

tasks based on their difficulties: Easy, Normal, and Hard. A task’s difficulty is measured

by the total area that a robot can navigate to and unload an object from. For instance, a

task with all unloading positions being surrounded by obstacles has a high difficulty. After

sorting the tasks based on their difficulties, we evenly placed them into the three groups.

GROP consistently performed better in task completion rate (y-axis) in all three set-

tings, while maintaining high plan efficiency (x-axis). We also see that GROP performed

particularly well in hard tasks where it produced the highest completion rate and the lowest

action costs. While PETLON generated efficient plans (comparable to GROP), it does not

reason about feasibility, resulting in low completion rate. DVH generates feasible plans

(like FCN-Planning), but it does not consider action costs, resulting in long execution time

in task completions. Results support our hypothesis that GROP improves plan efficiency

without introducing additional action costs.

Robot Velocities: In this experiment, we used three robots that move at different veloci-

ties: 0.2 m/s (Slow), 0.4 m/s (Normal), and 0.8 m/s (Fast). Results are shown in Table 4.1.
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(a) PETLON (17.1 m, 1/3 completion rate)

0.552

0.609

0.728

0.223

0.466
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Figure 4.4: Three illustrative trials using GROP and two baselines (PETLON and DVH).
The robot needs to move three objects from the loading table (bottom) to three unloading
target positions marked by blue stars, where the robot can hold multiple objects. Green
dots (or purple circles) represent a robot successfully (or unsuccessfully) navigating to the
position and unloading an object to the corresponding target position. Three heatmaps
are overlaid onto overhead images, as shown on the right, indicating the feasibility values
of navigating to and unloading from different positions. The numbers on the very right
represent task-level action feasibility values of unloading from one side of the table. Under
each subfigure, we present the total navigation distance and task completion rate, where
we see GROP produced the highest completion rate, and performed better than DVH in
efficiency.

Here we compare GROP to only the two baselines that are available from the literature

(PETLON and DVH). We see that GROP outperforms the two baselines in task completion

rate. What is interesting is that when the robot moves fast, GROP automatically weighted

feasibility more, because the robot will not take too long to complete a navigation task any-

way. As a result, GROP produced the highest task completion rate of 0.88 on a fast robot,

while the baselines are not adaptive to the robot’s velocity.

Illustrative Trials in Simulation: Fig. 4.4 shows three illustrative trials using GROP

(ours) and two baselines (PETLON and DVH), where GROP produced the highest com-

pletion rate (3/3), while the baselines succeeded in at most two tasks. PETLON does not

evaluate plan feasibility, and planned to unload objects to the middle and right positions

from the south. In particular, unloading to the middle unloading position from the south

is very difficult (with a feasibility value of 0.223). PETLON does not take such factors
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Obstacles

        Initial Position 

        Unloading Position

        Removed Obstacle

Figure 4.5: The arm robot is placing an object onto the mobile robot in trial T1. There
are two loading positions on the south and east sides of the table, marked by red flags.
The mobile robot’s initial position is shown as the blue dot. The green box highlights the
obstacle that was removed in T2.

into consideration, which produced failures in unloading to the middle position. DVH does

not consider efficiency in plan optimization, and generated a plan with long-distance nav-

igation actions. GROP incorporates both efficiency and feasibility, and produced the best

overall performance.

Real Robot Demonstration: We demonstrate two trials of T1 and T2 using GROP on

a real-robot platform. Instead of using a mobile manipulator, we used a robot system

that includes two robots of a Segway-based mobile platform and a UR5e robot arm. The

mobile robot started from an initial position, and was tasked with loading a distant object

(an orange cube in our case) from the arm robot. The object was on the same table as the

arm robot is, where the arm robot could pick the object, and place it onto the mobile robot

to complete a loading behavior.
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In trial T1, the system computed the task-level feasibility values of loading from the

south and east sides: 0.377 and 0.721. The corresponding costs were 7.5 and 19.3 re-

spectively (distances of 4.5m and 11.6m), where the robot moved at speed 0.6m/s. GROP

evaluated the utility values (7.6 and 9.5 in this case), and decided to load from the east side

(less efficient but more feasible), as shown in Fig. 5.6.

In trial T2, the robot system worked on the same task, while one obstacle (green box in

Fig. 5.6) was removed from the environment. The obstacle removal changed the feasibility:

Loading from the south has higher feasibility of 0.520, and a higher utility of 13.3. Ac-

cordingly, the mobile robot decided to load the object from the south, where there existed

little chance of failing in the loading behavior but the overall efficiency was significantly

improved. In both demonstration trials, the robot system succeeded in loading the object to

the mobile platform.

4.6 Conclusion

This chapter introduces an algorithm, called Grounded RObot Task and Motion Planning

(GROP), that considers both efficiency and feasibility for robot task-motion planning.

GROP visually grounds spatial relationships to probabilistically evaluate action feasibil-

ity, and is particularly suitable for TAMP domains with long-term robot operations (e.g.,

long-distance navigation). We have extensively evaluated GROP in simulation using a mo-

bile manipulator, and demonstrated it using a real robot system that includes a mobile robot

and an arm robot. Results showed that GROP outperformed competitive baselines from the

literature in plan efficiency without introducing additional action costs.
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5 Symbolic State Space Optimization

5.1 Introduction

At the task level, robots frequently use symbolic planners to sequence high-level ac-

tions [92]. At the motion level, each high-level action is grounded to low-level trajectories

in continuous spaces using motion planners [93]. TAMP algorithms aim to bridge the gap

between task planning and motion planning towards enabling robots to fulfill task-level

goals and maintain motion-level feasibility at the same time [91, 1]. A common and widely

accepted assumption for most TAMP research is that the task planner is predefined by a

domain expert who manually specifies a symbolic state space. In this paper, we discuss

TAMP in a long horizon mobile manipulation domain where the robot is given a task of

repeated navigation to perform manipulation behaviors (e.g., pick and place) in different

places.

Nevertheless, manually constructing state spaces might not be desirable in some sce-

narios. Fig. 5.1 shows a situation where in long horizon mobile manipulation domains,

if each object is placed at a separate symbolic location as defined in the task-level state

space, the robot will always need to navigate before picking up the next object. This is

because the task planner believes only a navigation action can bring the robot to the loca-

tion required by the next manipulation action. In practice, however, the robot often picks
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can_1
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Figure 5.1: Objects are frequently in separate symbolic locations in a predefined task plan-
ner. A TAMP system with such a fine-grained state space would always generate plans that
suggest the robot navigate before every manipulation. However, if an optimized state space
can include multiple objects (that are close to each other) in a single location, the robot
will be able to navigate once and perform a sequence of manipulation actions. We aim to
answer how to compute such symbolic locations and their geometric groundings.

up multiple objects from a single position, for example, as restaurant waiters can easily

identify a standing location that allows them to pick up multiple dishes at once. Especially

when objects are located close to each other, it is unnecessary for the robot to navigate

before every manipulation. This observation motivated the development of this research on

optimizing symbolic state spaces for task planners to best facilitate TAMP for long horizon

mobile manipulation.

One of the challenges in optimizing symbolic state spaces for TAMP, which is the focus
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of this work, comes from the uncertainties in action and perception. We consider failures

in navigation and manipulation behaviors, e.g., due to the robot being too close to ob-

stacles or too far from the target objects. To this end, we propose Symbolic State Space

Optimization (S3O) based on probabilistically evaluated action feasibility under uncer-

tainty. S3O partitions the continuous configuration space into a set of abstracted locations

with their 2D geometric groundings to compute efficient and feasible task-motion plans in

long horizon mobile manipulation domains.

Fig. 5.2 shows an overview of S3O which first constructs a candidate set of object-

centric symbolic state spaces using Voronoi Partitioning [123]. Then the algorithm ranks

each state space by a scoring function developed using feasibility evaluation from robot per-

ception. The ranking mechanism effectively reduces the search complexity of state spaces

by controlling the size of the candidate set. Top-ranked state spaces are used for construct-

ing the task planner in the TAMP system where we further apply an Evolution Strategy (ES)

algorithm [124] for efficient motion-level search. The proposed framework has been quan-

titatively evaluated in simulation and qualitatively demonstrated on real hardware, where

the robot works on the task of “clearing up dining tables.” Compared to existing TAMP

baselines, experimental results show that our approach consistently leads to high-quality

task-motion plans in terms of task completion rate and plan execution time.

5.2 Related Work

In this section, we describe the three most related research areas, including those task

and motion planning methods that optimize plan efficiency and feasibility, research that

learns symbolic representations for robot planning, and the application domain of long
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Figure 5.2: An overview of Symbolic State Space Optimization (S3O) for Task and Motion
Planning systems.

horizon mobile manipulation.

5.2.1 TAMP for Efficient and Feasible Behaviors

Task and motion planning research can be categorized into two groups: one includes

high-level actions that take no more than a few seconds (e.g., picking up, putting down and

pushing objects), the other requires robot actions taking relatively long time (e.g., long-term

navigation) [103]. The former type of TAMP has a long history in the literature and focuses

mostly on action feasibility [94, 95, 96, 99, 100, 101, 102], while some recent methods have

considered behavioral efficiency in the latter type of TAMP, usually in robot navigation,

autonomous driving, or mobile manipulation domains [103, 97, 16, 98, 4, 125, 20]. One

common assumption for these TAMP methods is the predefined task planner. Unlike those,

we probabilistically compute action feasibility via visual perception to optimize the task-

level state space.
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5.2.2 Symbol Learning for Robot Planning

Learning-based methods have shown effectiveness in model acquisition and symbol

generation for robot planning. Researchers have learned action preconditions and ef-

fects models for enabling purely symbolic planning [84] and integrated task-motion plan-

ning [126]. Some other work focuses on symbol learning and mapping, such as connect-

ing natural language to learned symbolic abstractions [127], learning state abstractions for

bootstrapping motion planning [128], and learning to ground the physical meanings of ob-

ject attribute symbols in the real world [17]. In our work, we also learn to generate and

map each symbol from the continuous space, but going beyond that, we further optimize

the efficiency and feasibility of task-motion plans using the learned symbols.

5.2.3 Long Horizon Mobile Manipulation

There is rich literature on learning and planning coordinated actions for mobile ma-

nipulation [9, 10]. Most existing methods focused on positioning the base of a mobile

manipulator in such a way that manipulability is maximized [129, 130, 131, 132]. A con-

vincing technique is using robot reachability maps [133, 134]. Recent research applies

reinforcement learning in a hierarchical style to tackle this problem [135, 136, 137, 138,

139]. In this paper, we not only consider coordinated navigation and manipulation, but

also optimize a sequence of mobile manipulation actions over a long horizon. Sequential

mobile manipulation tasks [140] have been studied, including works that aimed to mini-

mize platform movements to reach a set of poses in the workspace [141] or to minimize the

overall cost of completing the task [142]. As compared to our approach, we also consider
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perception and assume execution-time uncertainty from both perception and actuation.

5.3 Problem Statement

We present the terminologies, assumptions, and objectives of the TAMP problem we fo-

cus on in this research: a long horizon mobile manipulation task where the robot repeatedly

navigates and picks up multiple objects in different locations.

Symbols and Symbol Mapping: O = {o1,o2...} is a set of target objects that can be

moved by a robot. L = {l1, l2...} is a set of symbolic locations. Let y ∈ Y be a set of

xy poses in continuous space. Sym : Y → L is a function that maps any 2D geometric

position y ∈ Y to a symbolic location l ∈L . The symbolic state space of our problem is

defined in the form of ⟨L ,Sym,Y ⟩.

Actions: The robot is equipped with skills of performing a set of actions denoted as

A : A n∪A m, where A n and A m are navigation actions and manipulation actions respec-

tively. A navigation action an : ⟨lr, l′r,yr,y′r⟩ ∈A n is specified at both low and high levels:

1) the robot’s current and next symbolic locations that are denoted as lr, l′r ∈L ; 2) the cor-

responding 2D coordinates yr,y′r mapped by Sym. r is a symbol to denote “robot” as being

distinguished from symbol o for “object”. A manipulation action am : ⟨o, l,yr,yo⟩ ∈ A m

is specified by an object (i.e., o) to be manipulated, the object’s 2D location, yo, the ob-

ject’s and the robot’s symbolic location, l ∈L . The robot and the object to be manipulated

should be in the same symbolic location. In this work, we consider pickup as a manip-

ulation action and goto as a navigation action. Actions are defined via preconditions and

effects. For instance, the action pickup(o1) has preconditions of at(robot, l1) and
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at(o1, l1), meaning that to pick up the object o1, the object must be co-located with the

robot base in the same symbolic location l1. The effects of pickup(o1) include o1 being

moved into the robot’s hand, i.e., inhand(o1).

Action Uncertainty: Let T : T n∪T m be a set of probability distributions for modeling

action uncertainties. For a navigation action, T n(ŷ′r|yr,y′r) represents the probability of

a mobile robot aiming to navigate to goal y′r, while landing in ŷ′r, given the current robot

position yr. For a manipulation action, T m(ŷ′o|yo,yr) represents the probability of the robot

given an end effector goal position yo of “reaching” the object, while ending up at a position

ŷ′o, given the robot’s standing position yr. In practice, T n and T m are determined by the

robot’s navigation and manipulation systems. In this paper, both T nand T m are treated as

black box.

Perception: The robot visually perceives the environment. While we provide the robot

with top-down view images in this work, our approach can be combined with perception

methods that rely on first-person view for object pose estimation [143]. A map is generated

in a pre-processing step, and provided to the robot as prior information for navigation

purposes using rangefinder sensors. Please note that dynamic obstacles such as randomly-

placed chairs are not in the map.

Problem Formulation: The input of the problem is a tuple ⟨Y init
o ,yinit

r ,A ⟩. Y init
o is a set

of objects’ initial positions and yinit
r is the robot’s initial base pose. The problem outputs

a task-motion plan p which is in the form of a sequence of navigation actions an ∈ An

and manipulation actions am ∈ Am. The problem finds a task planner PlnL ,Sym,Y that is

parameterized by the symbolic state space ⟨L,Sym,Y ⟩, in order to compute a task-motion
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plan p, where the objective is to maximize the plan utility for improving task completion

rate and reducing robot execution time.

Remark: S3O agents are developed under the following assumptions that are aligned with

the problem definitions presented in this section:

• the robot state space is not predefined, including unknown symbolic locations.

• actions and action realizations are unknown. Navigation behaviors are particular

unreliable due to dynamic obstacles in cluttered environments.

• top-down views are available as part of the observation, so as lidar scan and a pre-

built map (not including dynamic obstacles).

• the goal is to maximize success rate and minimize the total action cost of the current

task.

5.4 Symbolic State Space Optimization (S3O)

In this section, we present the paper’s main contribution called Symbolic State Space

Optimization (S3O) which optimizes the state space for the task planner based on prob-

abilistically evaluated action feasibility. S3O first constructs symbolic state spaces using

object-centric Voronoi Partitioning and robot reachability. And then it ranks a set of candi-

date state spaces based on evaluated action feasibility.

Constructing Symbolic State Spaces: We construct state spaces following two princi-

ples: 1) states (i.e., locations) should be determined by which object(s) they are the closest

to; 2) the distance from the object to each pose in a state should be within the maximum
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Figure 5.3: Left: Action feasibility values are computed using robot perception and rep-
resented as heatmaps. Right: A top-ranked Voronoi Partition for the state space generated
using S3O, where objects A and B are in one symbolic location, and objects E and F are in
another one.

reachability (1 meter in our case) of the robot. Thus, in our framework, we consider poses

that are around the objects within 1 meter, and generate areas by object positions in the 2D

configuration space using the Voronoi Partitioning algorithm. The distance from each 2D

pose in an area to its corresponding object position is less than that from every other object

position. Each area in the Voronoi diagram is considered as a symbolic location l, and the

whole Voronoi partition corresponds to a set of locations L as well as a symbol mapping

function Sym to map each 2D pose to a location l ∈L . Further, possible adjacency area

merging operations are conducted in the Voronoi diagram. Each area merging that results

in a new symbolic state space (i.e., ⟨L ,Sym,Y ⟩) is considered as a state space candidate.

Scoring Function for State Space Ranking: In order to deal with a large number of

objects, we compute scores for each state space candidate, i.e., ⟨L ,Sym,Y ⟩. The score is
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calculated using the following function that is based on action feasibility:

Score(⟨L ,Sym,Y ⟩) = ∑
o∈O

Feat(l,o), if at(o, l) (5.1)

where Feat(l,o) is the task-level action feasibility function that computes the probability

of the robot navigating to location l and picking up object o. Intuitively, if the symbolic

state space has a high accumulative task-level feasibility value over all the objects, this state

space will be evaluated with a high score. Fig. 5.3 shows the evaluated action feasibility

(represented as heatmaps) and a top-ranked Voronoi Partition for the state space.

After ranking the state spaces by the scores computed using Eqn. 5.1, we select the top

K state spaces to construct K task planners at robot planning time. In each TAMP search

iteration, our system normalizes the scores to produce a probability distribution from which

one of the task planners is chosen. The system plans in parallel, each with a sampled task

planner, and uses argmax to find the state space (i.e., ⟨L ,Sym,Y ⟩) that generates a plan

of the highest utility.

Action Feasibility Evaluation: Robot perception is used to probabilistically evaluate

action feasibility, represented as function Fea : Feat ∪ Feam. The task-level feasibility

function Feat(l,o) takes a symbolic location l and an object o as input, while the motion-

level feasibility function Feam(yr,yo) takes a robot 2D pose yr and an object 2D pose

yo as input. Both task-level and motion-level feasibility functions output feasibility values

ranging from 0.0 (infeasible) to 1.0 (feasible). In this work, Feat serves as a key component

in the proposed scoring function (Eqn. 5.1). Feam is used to compute: 1) Feat , which is

discussed in the next paragraph, and 2) the plan utility, which is formally defined in the
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next section.

Our task-level feasibility function Feat(l,o) shares the same definition as what was ini-

tially introduced in [4]. Briefly summarizing here, Feat(l,o) relies on Feam(yr,yo) and a

sampling function Smp. Feam(yr,yo) computes the motion-level feasibility of robot nav-

igating to 2D position yr and picking up the object that is at position yo. Smp samples

2D positions yr that satisfy Sym(yr) = l, where the positions are weighted by Feam(yr,yo).

In other words, positions of higher motion-level feasibility are more likely to be sampled.

Computing Feat(l,o) is to calculate the average motion-level feasibility over N samples

from Smp.

We extract Feam(yr,yo) from a learned Fully Convolutional Network model [12], which

is trained using robot data from past experience, represented as gray-scale heatmap images.

We trained the model by collecting a dataset that diversifies the obstacle (i.e., chair) posi-

tions and is with randomly-placed objects on the table. One recent work uses the same

architecture for motion-level feasibility evaluation [4], but their model can only deal with

objects that are of a predefined distance from the table edge due to the limitation of its

training dataset. In comparison, the motion-level feasibility function extracted from our

model equips the robot with the capability of handling more generalized object pick and

place tasks.

5.5 Computing Task-motion Plans

Long horizon mobile manipulation domains require robots to complete tasks as accu-

rately and quickly as possible. This section details how S3O computes task-motion plans.

As described in Sec. 5.3, the objective of the problem is to maximize the overall task
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Task completion: 2/7 
Execution time: 128 (s)

(a) Early iteration.

Task completion: 5/7 
Execution time: 115 (s)

(b) Late iteration.

Figure 5.4: Samples (cyan pixels) drawn from the CMA-ES sampler at early and late it-
erations. With action feasibility and efficiency being considered in the objective function,
robot base positions gradually converge to a sequence of areas that are close to the objects
for the robot to reach, and are of a low overall navigation cost.

completion rate and minimize the robot execution time. Robot execution time is largely

affected by how much time each action takes (especially long-range navigation actions),

and the task completion rate depends on manipulation action feasibility. To this end, at

planning time, we design the cost function for an action a as:

Cst(a) =


len(yr,y′r)/v+ γ, if a ∈A n

δ , if a ∈A m

(5.2)

where function len is able to measure the trajectory length of executing a navigation ac-

tion and v is the robot speed. γ is a constant cost for navigation when the robot starts

moving, which motivates the robot to select as few navigation actions as possible. δ is a

constant cost for manipulation actions which is relatively small as compared to the cost for

navigation actions.

We further use the action cost function to design the action reward function. Let λ be a
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successful reward bonus of picking up an object. The reward function is as follows:

R(a) =


−Cst(a), if a ∈A n

−Cst(a)+Feam(yr,yo) ·λ , if a ∈A m

(5.3)

We use the CMA-ES optimization technique [124] to serve as the sampling algorithm

for motion-level 2D poses that the robot navigates to and performs the manipulation ac-

tion(s) at. Fig. 5.4 shows an example of the samples drawn from early and late iterations of

the CMA-ES sampler. Each sample we draw is in the form of ⟨y1
r [x],y

1
r [y],y

2
r [x],y

2
r [y], ...⟩,

where yi
r[x] (yi

r[y]) denotes the x (y) coordinate of the robot pose for navigating to and pick-

ing up the ith object from. We maintain an independent CMA-ES sampler for each fixed

task-level sequence, so we are able to form a complete task-motion plan p by simply chain-

ing the sampled xy positions. Two consecutive pairs of xy positions (i.e., ⟨yi
r[x],y

i
r[y]⟩ and

⟨yi+1
r [x],yi+1

r [y]⟩) can be used to parameterize a navigation action, and every single pair of

xy positions plus an object position (i.e., yo) can be used to parameterize a manipulation

action. This enables us to convert a sample to a sequence of actions and then evaluate the

sample by computing ∑R(a). ∑R(a) is the utility of a task-motion plan and serves as the

objective function for the CMA-ES sampler.

5.6 Experiments

We conducted extensive experiments in simulation, where a mobile manipulator per-

forms navigation and manipulation actions to “collect dishes” in a “restaurant” scenario.

We also demonstrated the computed plan using our method on a real robot. Our main hy-
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Figure 5.5: Overall performances of our approach (S3O-GROP∗) and four baseline meth-
ods in task completion rate and robot execution time (s). Tasks are grouped based on their
difficulties. S3O-GROP∗ produced the highest task completion rate while maintaining the
lowest robot execution time. This observation is consistent over tasks of different difficul-
ties.

pothesis is that under a planning time budget, the proposed framework outperforms existing

TAMP algorithms in task completion rate and robot execution time.

5.6.1 Baselines

Ours and the baseline methods differ from each other in how to construct and opti-

mize task planners (state spaces in particular). We compare S3O with basic object-centric

Voronoi Partitioning (denoted as “V”). After selecting a task planner, there are different

TAMP strategies we can choose from. We consider two TAMP algorithms for navigation

domains from the literature, which are GROP [4] and PETLON [103]. Our TAMP compo-

nent is built on GROP and further incorporates the proposed CMA-ES sampling algorithm

for motion-level optimization. Thus, we denote our TAMP strategy as GROP∗. Com-

bining different methods from task planner construction and TAMP strategy, we consider

the following five methods in total: S3O-GROP∗, S3O-GROP, V-GROP∗, V-GROP, and

V-PETLON. We briefly summarize the major differences between the five methods:
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• S3O-GROP∗ (proposed): It optimizes state spaces using S3O and samples naviga-

tion goals using CMA-ES. The algorithm optimizes efficiency and feasibility.

• S3O-GROP: An ablative version of S3O-GROP∗. It is the same as S3O-GROP∗

without CMA-ES.

• V-GROP∗: An ablative version of S3O-GROP∗. It is the same as S3O-GROP∗ with-

out state space optimization.

• V-GROP [4]: It does not optimize the state space, and samples navigation goals only

by feasibility. The algorithm optimizes plan efficiency and action feasibility.

• V-PETLON [103]: It does not optimize the state space, and selects navigation goals

by just randomly sampling an obstacle-free position that is close to the object posi-

tion. The algorithm optimizes plan efficiency but does not evaluate action feasibility.

In comparison, our method, S3O-GROP∗, constructs the task planner using S3O and se-

lects navigation goals by CMA-ES sampling, whose objective includes both motion-level

feasibility and long horizon mobile manipulation cost. Note that we did not include “S3O-

PETLON” as one of the baselines as there is no feasibility evaluation in the original PET-

LON algorithm, thus S3O is inapplicable.

5.6.2 Experimental Setup

The simulation environment contains seven tables of different sizes: one long table as

the “bar area”, two mid-sized tables, and four small tables that are able to take one person

per table. Objects to be collected are randomly generated on the tables, and an obstacle
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(i.e., chair) that is not mapped beforehand is placed near each object with a randomly

generated position and orientation. The number of objects is dynamically changed for

different environments, ranging from 5 to 7. An RGB camera is attached to the ceiling to

capture overhead images of environments for robot perception. We assume the robot can

hold multiple objects at the same time. Task completion is evaluated based on if “dishes”

on the tables are successfully “collected”.

The mobile manipulator in simulation includes a UR5e robot arm, a Robotiq 2F-140

gripper, an RMP 110 mobile base, and a Velodyne VLP-16 lidar sensor on the mobile base.

We used the Building-Wide Intelligence (BWI) codebase [27] to construct our simulation

platform, which relies on the Gazebo physics engine [29]. Rapidly exploring Random Tree

(RRT) approach [24] is used to compute motion-level manipulation plans. The navigation

stack was built using the move base package of Robot Operating System (ROS) [26]. The

robot’s task planner is ASP-based [22, 23] and the Clingo solver is applied for computing

task plans [122]. We adopted the FCN-VGG16 model [12] for predicting action feasibility

heatmaps. The model is trained using a machine equipped with an Intel 3.80GHz i7-10700k

CPU and a GeForce RTX 3070 GPU on a Ubuntu system.

5.6.3 Planning Parameters

At planning time, we do parallel computing using 12 CPUs on a different machine from

training the FCN model. The machine for planning is equipped with an 11th Gen Intel(R)

2.30GHz Core(TM) i7-11800H CPU. The planning time budget is set to 300 seconds. For

each task-level sequence, the maximum number of motion-level samples that can be drawn

is 200. The manipulation constant cost δ is set to 5, and the navigation constant starting
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Figure 5.6: Real robot demonstration of the planned trajectory computed using our opti-
mized task planner.

cost γ is set to 20. The reward for a successful manipulation action λ has a value of 150.

The robot velocity v is set to 0.4m/s. For the CMA-ES sampler, we consider the first 20

generations. Since the number of motion-level samples is fixed (i.e., 200), the population

size of each generation is set to 10. After ranking all possible state spaces, we choose the

top 5 of them according to the computed scores.

5.6.4 Task Completion Rate and Robot Execution Time

Fig. 5.5 shows the main results of task completion rate and robot execution time. There

were a total of 100 different tasks. We grouped the tasks based on their difficulties: Easy,

Moderate, and Difficult. A task’s difficulty is measured by the total area that a robot can

navigate to and pick up an object from. For instance, a task with all feasible picking up

positions being surrounded by obstacles has a high difficulty. After sorting the tasks based

on their difficulties, we evenly placed them into the three groups.

Our system consistently performed the best in task completion rate (left subfigure) in all

three settings, while maintaining the lowest robot execution time (right subfigure). We also

see that methods that use S3O (i.e., S3O-GROP∗ and S3O-GROP) have better or at least
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Table 5.1: Ablation study on the impact of different strategies for constructing the task planner.
Task completion rate / robot execution time are reported in the table. S3O is our method that
does task planner optimization; S3O-Random is an ablative version that uniformly selects the task
planner from the candidate set.

Task Difficulty S3O S3O-Random

Easy 0.52 ± 0.02 / 107.90 ± 5.35 0.30 ± 0.06 / 96.95 ± 2.40

Moderate 0.36 ± 0.03 / 118.68 ± 2.78 0.18 ± 0.08 / 97.89 ± 4.22

Difficult 0.29 ± 0.02 / 131.25 ± 3.64 0.17 ± 0.08 / 102.85 ± 6.30

similar performance compared with the methods that use basic Voronoi Partitioning (i.e.,

V-GROP∗, V-GROP, and V-PETLON). While only considering methods that use Voronoi

Partitioning, the one that uses GROP∗ generates plans that are of the least execution time

and maintains a similar (higher) success rate as compared to V-GROP (V-PETLON). Both

GROP∗ and GROP consider feasibility when sampling navigation points, but the former

also takes efficiency into account by using CMA-ES. That is the reason why V-GROP∗

and V-GROP share similar success rates but the former performs better in plan efficiency.

Overall, the results support our hypothesis.

5.6.5 Ablation Study

We also conducted an ablation study (as shown in TABLE 5.1) to learn the impact

of different strategies for constructing the task planner, specifically how to select a state

space from a set of state space candidates at planning time. Without a predefined state

space, we compare two methods for state space selection: the proposed S3O (with score

ranking), and an approach that uniformly samples state spaces from all possible candidates

(denoted as “Random”). We observe that by considering S3O, the robot achieves a higher

task completion rate for all tasks. When uniformly selects a state space to construct the

task planner, the system produces more cost-efficient plans, however, suffers from very
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poor performance in completing the task. The reason is that the random selection strategy

treats every state space candidate equally, even though some state spaces are unreasonable

for the current task. For instance, if two objects are too far from each other for the robot to

reach both, it will be reasonable to separate the two objects into different locations instead

of merging them into a single one. However, given the limited planning time, it is almost

impossible for S3O-Random to select the most suitable state space especially when there

are many objects, thus resulting in much lower task completion rates. On the other hand, it

is expected to see more Voronoi area merging operations (including feasible and infeasible

ones) for S3O-Random than our method which prefers only the feasible ones. As a result,

the S3O-Random agent prefers to navigate only a few times and tries to complete the whole

task, which is not ideal. In comparison, S3O (ours) seeks balance in task completion rate

and robot execution time.

5.6.6 Real Robot Demonstration

We demonstrated the generated plan using S3O-GROP∗ on a real robot, as shown in

Fig. 5.6. We use the Human Support Robot (HSR) from Toyota [144]. The robot is given a

“tidy home” task, including collecting three empty cans and moving the apple to the white

plate. Using our planning framework, the robot planned to navigate to the first position to

do three manipulation actions: “collect” (i.e., pick up the object and put it into a garbage

bag mounted on the robot) the green and red cans, and pick up the apple. While holding

the apple in hand, the robot then went to the second position to place the apple on the plate.

Finally, the robot planned to go to the third position to collect the blue can.
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5.7 Conclusion

This chapter introduces Symbolic State Space Optimization (S3O), which constructs

state space candidates from object-centric partitioning of the configuration space and ranks

each candidate by probabilistically evaluating action feasibility values. S3O is applied to

a TAMP system for long horizon mobile manipulation tasks where we further improve

motion-level search efficiency using CMA-ES. The resulting framework is called S3O-

GROP∗, which was extensively evaluated in simulation and demonstrated it in real. Re-

sults showed that S3O-GROP∗ produces task-motion plans that are of higher quality than

existing TAMP algorithms in terms of task completion rate and robot execution time.
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6 Conclusions and Future Work

This dissertation thoroughly studies the problem of symbol grounding and grounded

planning in the context of robotics.

For symbol grounding, we investigates the problem of Multimodal Embodied Attribute

Learning (MEAL) that both require a robot to compute a policy of leveraging multimodal

exploratory behaviors to identify object attributes. Accordingly, we have developed two

algorithms called mixed observability robot control (MORC) and MORC with information-

theoretic reward shaping (MORC-ITRS) for addressing OFFLINE- and ONLINE-MEAL prob-

lems respectively. MORC uses mixed observability Markov decision processes (MOMDPs)

to solve OFFLINE-MEAL problems, where a robot selects actions for multimodal percep-

tion in object exploration tasks. Experimental results show that MORC enables the robot to

identify object attributes more accurately without introducing extra cost from exploratory

behaviors compared to a baseline that suggests actions following a predefined action se-

quence. We further present MORC-ITRS selects exploratory behaviors toward simultane-

ous attribute classification and attribute identification. The latter is built on MORC, and

provoides an information-theoretic reward function for the exploration-exploitation trade

off in ONLINE-MEAL problems. Experimental results show that MORC-ITRS enables the

robot to complete attribute identification tasks at a higher accuracy using the same amount
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of training time compared to baselines.

Then we apply grounded symbols to robot task and motion planning. Specifically, we

discussed Grounded RObot Task and Motion Planning (GROP), that considers both ef-

ficiency and feasibility for robot task-motion planning. GROP visually grounds spatial

relationships to probabilistically evaluate action feasibility, and is particularly suitable for

TAMP domains with long-term robot operations (e.g., long-distance navigation). We ex-

tensively evaluated GROP in simulation using a mobile manipulator, and demonstrated it

using a real robot system that includes a mobile robot and an arm robot. Results showed

that GROP outperformed competitive baselines from the literature in plan efficiency with-

out introducing additional action costs. As a follow-up research, Symbolic State Space

Optimization (S3O) was introduced. S3O constructs state space candidates from object-

centric partitioning of the configuration space and ranks each candidate by probabilistically

evaluating action feasibility values. We further improve motion-level search efficiency in

S3O using CMA-ES. Results showed that the proposed method produces task-motion plans

that are of higher quality than existing TAMP algorithms (including GROP) in terms of task

completion rate and robot execution time.

6.1 Future Work I: Towards Transferable and Generalized Attribute

Grounding in Multi-Robot Setting

One common limitation of the two algorithms we used for symbol grounding in MEAL

problems is that the attribute classifiers are learned by a single robot and cannot directly

be used by another robot that has different behaviors, morphology, and sensory modalities.

It may be possible to use sensorimotor transfer learning (e.g., [145, 146, 147]) in future
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work to scale up our framework to allow multiple different robots to learn such models and

share their knowledge to further speed up learning. In addition, considering correlations

between attributes and handling fuzzy attributes can potentially improve the performance

of ONLINE-MEAL. Handling unseen attributes could be another interesting focus. Another

direction for the future is to learn the world dynamics through the task completion process

(currently the transition function is provided and the observation function is learned), where

reinforcement learning methods potentially can be used. It is also important to consider

human-robot dialogue to acquire attribute labels for objects in MEAL problems.

Multimodal perception is emphasized in MEAL agents, yet its challenges have been

largely overlooked by robotic researchers. The heterogeneous nature of multimodal data

makes the use of hand-designed features and multimodal sensor fusion extremely challeng-

ing for downstream robotic applications [8]. Additionally, collecting large-scale transfer-

able datasets across different robot platforms requires substantial effort and is expensive,

making multimodal sensor fusion and representation learning difficult for most robotics

research labs to initiate. Recently, some researchers have started developing realistic mul-

timodal simulations for robots, such as [148] for simulating audio data. However, these

platforms are still experimental and in early stages. Therefore, we aim to explore methods

for collecting large-scale multimodal data. both on real robots and in simulations.

To construct a more generalized framework for attribute grounding, we would like to

explore the possibility of formulating MEAL problems especially ONLINE-MEAL as Bayes-

Adaptive POMDPs (BAPOMDP) [149] where observation probabilities (functions) can be

considered as unobserved parameters in the state space over which we maintain beliefs.

During the learning process, the robot will continually gather data for approximating the
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BAPOMDP model while maintaining attribute identification performance guarantees. Fun-

damentally, a BAPOMDP model enables sequencing actions with the optimal trade-off be-

tween exploration and exploitation, which is exactly the underlying challenge of ONLINE-

MEAL. There can be practical challenges in applying BAPOMDP to our ONLINE-MEAL

problems, such as the lack of systems for learning BAPOMDP policies and the necessity

for more training data. BAPOMDP assumes the reward function is known and stationary.

In our current formulation of ONLINE-MEAL, however, the reward function dynamically

changes based on the learned observation function. Thus, a principled solution would re-

quire a new version of POMDP (and corresponding algorithms and systems), where both

reward and observation functions are learned over time. Developing such a general-purpose

framework would add a strong theoretical contribution to the literature, though in this arti-

cle we chose to develop solutions (MORC and MORC-ITRS) focusing on the specific MEAL

problems. There can be interesting future research to answer those questions.

6.2 Future Work II: Grounding Task Planners using Vision-Language

Models

Classical planning methods that are used in TAMP are good at leveraging rule-based

human knowledge to compute correct plans but suffer from the strong assumptions of per-

fect perception and action executions. For example, if the world model includes an apple

on a table, classical planners assume that the robot will always locate the apple after reach-

ing the table’s location, and picking up the apple will deterministically result in it being in

the robot’s hand. These assumptions fail to consider dynamically changing environments

and uncertain action outcomes, rendering it impractical for the robot to complete tasks by
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simply following computed plans in the real world. To enable successful plan executions,

TAMP frameworks are frequently accompanied by a plan monitoring system for linking

the symbolic states and actions to robot sensory observations, where significant engineer-

ing efforts are needed. Given the natural connection between planning symbols and human

language, it will be an interesting future direction to investigate how pre-trained Vision-

Language Models (VLMs) can assist the robot in realizing symbolic plans generated by

classical planners, while avoiding the engineering efforts of checking the outcomes of each

action.

One way to do so is by leveraging VLMs to detect action failures and verify action affor-

dances towards successful plan execution [150]. We can potentially take the advantage of

the domain knowledge encoded in classical planners, including the actions defined by their

effects and preconditions. For instance, by simply querying current observations against

the action knowledge, similar to applying VLMs to Visual Question Answering (VQA)

tasks, the robot can repeat an unsuccessful action or call the symbolic planner to generate a

new valid plan. However, we also acknowledge that such VLMs are not meant to be trained

for robot planning tasks, thus there will be more discussions on if researchers should spend

time on designing interfaces to make good use of large models [19], or collect hardware

and simulation data on training foundation models for robotics [151].

Another significant challenge in the field of planning and grounding is the unclear def-

inition of grounded planning. Although there has been an increasing amount of research

focusing on this topic, the lack of consistent assumptions or unified terminology within

publicly released benchmarks makes it difficult for researchers to reproduce state-of-the-art

results and collaborate effectively. For example, in perception, some work uses first-person

108



point clouds as observations, while others use bird-eye views; in planning, much research

assumes the existence of pre-trained robot skills, but these skills depend on different robot

platforms and vary significantly in task performance. To address these issues, we aim to

benchmark our grounded TAMP research (i.e., GROP in Chapter 4 and S3O in Chapter 5)

to facilitate progress in both the AI and robotics communities.

Regardless, we remain hopeful about successfully addressing these challenges in our

future endeavors.
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